TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning
Paper
•
2104.06979
•
Published
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased on the datasets-for-simcse dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/bert-base-uncased-stsb-tsdae")
# Run inference
sentences = [
'While the early models stayed close to their original form, eight subsequent generations varied substantially in size and styling.',
'While the stayed close their, eight generations varied substantially in size and',
'“ U ” cross of the river are a recent',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sts-dev and sts-testEmbeddingSimilarityEvaluator| Metric | sts-dev | sts-test |
|---|---|---|
| pearson_cosine | 0.6732 | 0.6425 |
| spearman_cosine | 0.6766 | 0.6322 |
text and noisy| text | noisy | |
|---|---|---|
| type | string | string |
| details |
|
|
| text | noisy |
|---|---|
White was born in Iver, England. |
White was born in Iver, |
The common mangrove plants are "Rhizophora mucronata", "Sonneratia caseolaris", "Avicennia" spp., and "Aegiceras corniculatum". |
plants are Rhizophora mucronata" "Sonneratia, spp.,". |
H3K9ac and H3K14ac have been shown to be part of the active promoter state. |
H3K9ac been part of active promoter state. |
DenoisingAutoEncoderLosstext and noisy| text | noisy | |
|---|---|---|
| type | string | string |
| details |
|
|
| text | noisy |
|---|---|
Philippe Hervé (born 16 April 1959) is a French water polo player. |
Philippe Hervé born April 1959 is French |
lies at the very edge of Scottish offshore waters, close to the maritime boundary with Norway. |
the edge Scottish offshore waters close to maritime boundary with Norway |
The place is an exceptional example of the forced migration of convicts (Vinegar Hill rebels) and the development associated with punishment and reform, particularly convict labour and the associated coal mines. |
The is an example of forced migration of convicts (Vinegar rebels and the development punishment and reform, particularly convict and the associated coal. |
DenoisingAutoEncoderLosseval_strategy: stepslearning_rate: 3e-05num_train_epochs: 1warmup_ratio: 0.1fp16: Trueoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 3e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|
| -1 | -1 | - | - | 0.3173 | - |
| 0.0081 | 1000 | 7.5472 | - | - | - |
| 0.0162 | 2000 | 6.0196 | - | - | - |
| 0.0242 | 3000 | 5.4872 | - | - | - |
| 0.0323 | 4000 | 5.1452 | - | - | - |
| 0.0404 | 5000 | 4.8099 | - | - | - |
| 0.0485 | 6000 | 4.5211 | - | - | - |
| 0.0566 | 7000 | 4.2967 | - | - | - |
| 0.0646 | 8000 | 4.1411 | - | - | - |
| 0.0727 | 9000 | 4.031 | - | - | - |
| 0.0808 | 10000 | 3.9636 | 3.8297 | 0.7237 | - |
| 0.0889 | 11000 | 3.9046 | - | - | - |
| 0.0970 | 12000 | 3.8138 | - | - | - |
| 0.1051 | 13000 | 3.7859 | - | - | - |
| 0.1131 | 14000 | 3.7237 | - | - | - |
| 0.1212 | 15000 | 3.6881 | - | - | - |
| 0.1293 | 16000 | 3.6133 | - | - | - |
| 0.1374 | 17000 | 3.5777 | - | - | - |
| 0.1455 | 18000 | 3.5285 | - | - | - |
| 0.1535 | 19000 | 3.4974 | - | - | - |
| 0.1616 | 20000 | 3.4421 | 3.3523 | 0.6978 | - |
| 0.1697 | 21000 | 3.416 | - | - | - |
| 0.1778 | 22000 | 3.4143 | - | - | - |
| 0.1859 | 23000 | 3.3661 | - | - | - |
| 0.1939 | 24000 | 3.3408 | - | - | - |
| 0.2020 | 25000 | 3.3079 | - | - | - |
| 0.2101 | 26000 | 3.2873 | - | - | - |
| 0.2182 | 27000 | 3.2639 | - | - | - |
| 0.2263 | 28000 | 3.2323 | - | - | - |
| 0.2343 | 29000 | 3.2416 | - | - | - |
| 0.2424 | 30000 | 3.2117 | 3.1015 | 0.6895 | - |
| 0.2505 | 31000 | 3.1868 | - | - | - |
| 0.2586 | 32000 | 3.1576 | - | - | - |
| 0.2667 | 33000 | 3.1619 | - | - | - |
| 0.2747 | 34000 | 3.1445 | - | - | - |
| 0.2828 | 35000 | 3.1387 | - | - | - |
| 0.2909 | 36000 | 3.1159 | - | - | - |
| 0.2990 | 37000 | 3.09 | - | - | - |
| 0.3071 | 38000 | 3.0771 | - | - | - |
| 0.3152 | 39000 | 3.065 | - | - | - |
| 0.3232 | 40000 | 3.0589 | 2.9535 | 0.6885 | - |
| 0.3313 | 41000 | 3.0539 | - | - | - |
| 0.3394 | 42000 | 3.0211 | - | - | - |
| 0.3475 | 43000 | 3.0158 | - | - | - |
| 0.3556 | 44000 | 3.0172 | - | - | - |
| 0.3636 | 45000 | 2.9912 | - | - | - |
| 0.3717 | 46000 | 2.9776 | - | - | - |
| 0.3798 | 47000 | 2.9539 | - | - | - |
| 0.3879 | 48000 | 2.9753 | - | - | - |
| 0.3960 | 49000 | 2.9467 | - | - | - |
| 0.4040 | 50000 | 2.9429 | 2.8288 | 0.6830 | - |
| 0.4121 | 51000 | 2.9243 | - | - | - |
| 0.4202 | 52000 | 2.9273 | - | - | - |
| 0.4283 | 53000 | 2.9118 | - | - | - |
| 0.4364 | 54000 | 2.9068 | - | - | - |
| 0.4444 | 55000 | 2.8961 | - | - | - |
| 0.4525 | 56000 | 2.8621 | - | - | - |
| 0.4606 | 57000 | 2.8825 | - | - | - |
| 0.4687 | 58000 | 2.8466 | - | - | - |
| 0.4768 | 59000 | 2.868 | - | - | - |
| 0.4848 | 60000 | 2.8372 | 2.7335 | 0.6871 | - |
| 0.4929 | 61000 | 2.8322 | - | - | - |
| 0.5010 | 62000 | 2.8239 | - | - | - |
| 0.5091 | 63000 | 2.8148 | - | - | - |
| 0.5172 | 64000 | 2.8137 | - | - | - |
| 0.5253 | 65000 | 2.8043 | - | - | - |
| 0.5333 | 66000 | 2.7973 | - | - | - |
| 0.5414 | 67000 | 2.7739 | - | - | - |
| 0.5495 | 68000 | 2.7694 | - | - | - |
| 0.5576 | 69000 | 2.755 | - | - | - |
| 0.5657 | 70000 | 2.7846 | 2.6422 | 0.6773 | - |
| 0.5737 | 71000 | 2.7246 | - | - | - |
| 0.5818 | 72000 | 2.7438 | - | - | - |
| 0.5899 | 73000 | 2.7314 | - | - | - |
| 0.5980 | 74000 | 2.7213 | - | - | - |
| 0.6061 | 75000 | 2.7402 | - | - | - |
| 0.6141 | 76000 | 2.6955 | - | - | - |
| 0.6222 | 77000 | 2.7131 | - | - | - |
| 0.6303 | 78000 | 2.6951 | - | - | - |
| 0.6384 | 79000 | 2.6812 | - | - | - |
| 0.6465 | 80000 | 2.6844 | 2.5743 | 0.6827 | - |
| 0.6545 | 81000 | 2.665 | - | - | - |
| 0.6626 | 82000 | 2.6528 | - | - | - |
| 0.6707 | 83000 | 2.6819 | - | - | - |
| 0.6788 | 84000 | 2.6529 | - | - | - |
| 0.6869 | 85000 | 2.6665 | - | - | - |
| 0.6949 | 86000 | 2.6554 | - | - | - |
| 0.7030 | 87000 | 2.6299 | - | - | - |
| 0.7111 | 88000 | 2.659 | - | - | - |
| 0.7192 | 89000 | 2.632 | - | - | - |
| 0.7273 | 90000 | 2.6209 | 2.5051 | 0.6782 | - |
| 0.7354 | 91000 | 2.6023 | - | - | - |
| 0.7434 | 92000 | 2.6226 | - | - | - |
| 0.7515 | 93000 | 2.6057 | - | - | - |
| 0.7596 | 94000 | 2.601 | - | - | - |
| 0.7677 | 95000 | 2.5888 | - | - | - |
| 0.7758 | 96000 | 2.5811 | - | - | - |
| 0.7838 | 97000 | 2.565 | - | - | - |
| 0.7919 | 98000 | 2.5727 | - | - | - |
| 0.8 | 99000 | 2.5863 | - | - | - |
| 0.8081 | 100000 | 2.5534 | 2.4526 | 0.6799 | - |
| 0.8162 | 101000 | 2.5423 | - | - | - |
| 0.8242 | 102000 | 2.5655 | - | - | - |
| 0.8323 | 103000 | 2.5394 | - | - | - |
| 0.8404 | 104000 | 2.5217 | - | - | - |
| 0.8485 | 105000 | 2.5534 | - | - | - |
| 0.8566 | 106000 | 2.5264 | - | - | - |
| 0.8646 | 107000 | 2.5481 | - | - | - |
| 0.8727 | 108000 | 2.5508 | - | - | - |
| 0.8808 | 109000 | 2.5302 | - | - | - |
| 0.8889 | 110000 | 2.5223 | 2.4048 | 0.6771 | - |
| 0.8970 | 111000 | 2.5274 | - | - | - |
| 0.9051 | 112000 | 2.515 | - | - | - |
| 0.9131 | 113000 | 2.5088 | - | - | - |
| 0.9212 | 114000 | 2.5035 | - | - | - |
| 0.9293 | 115000 | 2.495 | - | - | - |
| 0.9374 | 116000 | 2.5066 | - | - | - |
| 0.9455 | 117000 | 2.4858 | - | - | - |
| 0.9535 | 118000 | 2.4803 | - | - | - |
| 0.9616 | 119000 | 2.506 | - | - | - |
| 0.9697 | 120000 | 2.4906 | 2.3738 | 0.6766 | - |
| 0.9778 | 121000 | 2.5027 | - | - | - |
| 0.9859 | 122000 | 2.4858 | - | - | - |
| 0.9939 | 123000 | 2.4928 | - | - | - |
| -1 | -1 | - | - | - | 0.6322 |
Carbon emissions were measured using CodeCarbon.
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@inproceedings{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
pages = "671--688",
url = "https://arxiv.org/abs/2104.06979",
}
Base model
google-bert/bert-base-uncased