Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
12
This is a sentence-transformers model finetuned from hiiamsid/sentence_similarity_spanish_es. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sd-dreambooth-library/mks-similarity")
# Run inference
sentences = [
'¿Qué modelo corresponde al código YP107?',
'¿Cuánto cuesta la llave P123VE?',
'¿La llave TE4 pertenece a qué marca?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sentence1, sentence2, and label| sentence1 | sentence2 | label | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | label |
|---|---|---|
¿CY1 HELLO KITTY CORAZONES tiene un precio accesible? |
¿Cuánto cuesta la llave CY43? |
0.0 |
¿Qué modelo corresponde al código OP12? |
¿Me puedes decir cuánto vale CHEVROLET GM29? |
0.0 |
¿YALE PERSONAJE HULK tiene un precio accesible? |
¿Cuánto debo pagar por la llave con código YP117? |
1.0 |
CosineSimilarityLoss with these parameters:{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
sentence1, sentence2, and label| sentence1 | sentence2 | label | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | label |
|---|---|---|
¿Cuál es el precio de la AM3 AMERICAN LOCK? |
¿Cuánto debo pagar por la llave con código AM3? |
1.0 |
¿Cuánto debo pagar por la llave con código MAS9? |
¿La llave MAS9 pertenece a qué marca? |
1.0 |
¿La llave YP113 pertenece a qué marca? |
¿Qué llave tiene el código E029? |
0.0 |
CosineSimilarityLoss with these parameters:{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32num_train_epochs: 2warmup_ratio: 0.1fp16: Trueoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0351 | 100 | 0.1663 | - |
| 0.0703 | 200 | 0.1023 | - |
| 0.1054 | 300 | 0.0807 | - |
| 0.1405 | 400 | 0.0723 | - |
| 0.1757 | 500 | 0.0614 | 0.0535 |
| 0.2108 | 600 | 0.0569 | - |
| 0.2460 | 700 | 0.052 | - |
| 0.2811 | 800 | 0.0382 | - |
| 0.3162 | 900 | 0.0408 | - |
| 0.3514 | 1000 | 0.0358 | 0.0329 |
| 0.3865 | 1100 | 0.0353 | - |
| 0.4216 | 1200 | 0.032 | - |
| 0.4568 | 1300 | 0.0303 | - |
| 0.4919 | 1400 | 0.0275 | - |
| 0.5271 | 1500 | 0.0263 | 0.0223 |
| 0.5622 | 1600 | 0.0237 | - |
| 0.5973 | 1700 | 0.0215 | - |
| 0.6325 | 1800 | 0.0233 | - |
| 0.6676 | 1900 | 0.0198 | - |
| 0.7027 | 2000 | 0.022 | 0.0163 |
| 0.7379 | 2100 | 0.0185 | - |
| 0.7730 | 2200 | 0.0178 | - |
| 0.8082 | 2300 | 0.0168 | - |
| 0.8433 | 2400 | 0.018 | - |
| 0.8784 | 2500 | 0.0158 | 0.0127 |
| 0.9136 | 2600 | 0.0141 | - |
| 0.9487 | 2700 | 0.015 | - |
| 0.9838 | 2800 | 0.0131 | - |
| 1.0190 | 2900 | 0.0117 | - |
| 1.0541 | 3000 | 0.0106 | 0.0100 |
| 1.0892 | 3100 | 0.0082 | - |
| 1.1244 | 3200 | 0.0088 | - |
| 1.1595 | 3300 | 0.0084 | - |
| 1.1947 | 3400 | 0.0087 | - |
| 1.2298 | 3500 | 0.0093 | 0.0079 |
| 1.2649 | 3600 | 0.0106 | - |
| 1.3001 | 3700 | 0.0097 | - |
| 1.3352 | 3800 | 0.0074 | - |
| 1.3703 | 3900 | 0.0072 | - |
| 1.4055 | 4000 | 0.0094 | 0.0067 |
| 1.4406 | 4100 | 0.0062 | - |
| 1.4758 | 4200 | 0.0072 | - |
| 1.5109 | 4300 | 0.0081 | - |
| 1.5460 | 4400 | 0.0075 | - |
| 1.5812 | 4500 | 0.0071 | 0.0059 |
| 1.6163 | 4600 | 0.0049 | - |
| 1.6514 | 4700 | 0.0064 | - |
| 1.6866 | 4800 | 0.0072 | - |
| 1.7217 | 4900 | 0.0075 | - |
| 1.7569 | 5000 | 0.0062 | 0.0052 |
| 1.7920 | 5100 | 0.0061 | - |
| 1.8271 | 5200 | 0.0059 | - |
| 1.8623 | 5300 | 0.0062 | - |
| 1.8974 | 5400 | 0.005 | - |
| 1.9325 | 5500 | 0.0068 | 0.0048 |
| 1.9677 | 5600 | 0.0051 | - |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
hiiamsid/sentence_similarity_spanish_es