Linear Model Merging Unlocks Simple and Scalable Multimodal Data Mixture Optimization

arXiv 🤗 Model (HuggingFace) 🤗 Dataset (HuggingFace) github

This is an official checkpoint from the paper: "Linear Model Merging Unlocks Simple and Scalable Multimodal Data Mixture Optimization " (link). See the official implementation for more information on how to use the models.

qwen2_2b_lora_expert_counting-102400

This model is a fine-tuned version of Qwen/Qwen2-VL-2B on a custom dataset with Counting data (~100k samples).

It achieves the following results on the evaluation set:

  • Loss: 0.1590

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 800

Training results

Training Loss Epoch Step Validation Loss
0.2592 0.125 100 0.2344
0.223 0.25 200 0.2009
0.1856 0.375 300 0.1820
0.1881 0.5 400 0.1677
0.1773 0.625 500 0.1606
0.1772 0.75 600 0.1600
0.1731 0.875 700 0.1592
0.1714 1.0 800 0.1590

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.4
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
15
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for daviBera/qwen2_2b_lora_expert_counting-102400

Base model

Qwen/Qwen2-VL-2B
Adapter
(6)
this model

Collection including daviBera/qwen2_2b_lora_expert_counting-102400

Paper for daviBera/qwen2_2b_lora_expert_counting-102400