Streaming LLM Training with Unsloth
Train on massive datasets without downloading anything - data streams directly from the Hub.
π¦₯ Latin LLM Example
Teaches Qwen Latin using 1.47M texts from FineWeb-2, streamed directly from the Hub.
Blog post: Train on Massive Datasets Without Downloading
Quick Start
# Run on HF Jobs (recommended - 2x faster streaming)
hf jobs uv run latin-llm-streaming.py \
--flavor a100-large \
--timeout 2h \
--secrets HF_TOKEN \
-- \
--max-steps 500 \
--output-repo your-username/qwen-latin
# Run locally
uv run latin-llm-streaming.py \
--max-steps 100 \
--output-repo your-username/qwen-latin-test
Why Streaming?
- No disk space needed - train on TB-scale datasets without downloading
- Works everywhere - Colab, Kaggle, HF Jobs
- Any language - FineWeb-2 has 90+ languages available
Options
| Argument | Default | Description |
|---|---|---|
--base-model |
unsloth/Qwen3-0.6B-Base-unsloth-bnb-4bit |
Base model |
--max-steps |
500 | Training steps |
--batch-size |
4 | Per-device batch size |
--gradient-accumulation |
4 | Gradient accumulation steps |
--learning-rate |
2e-4 | Learning rate |
--output-repo |
Required | Where to push model |
--wandb-project |
None | Wandb project for logging |
Performance
| Environment | Speed | Why |
|---|---|---|
| Colab A100 | ~0.36 it/s | Network latency |
| HF Jobs A100 | ~0.74 it/s | Co-located compute |
Streaming is ~2x faster on HF Jobs because compute is co-located with the data.
π¨ VLM Streaming Fine-tuning (Qwen3-VL)
Fine-tune Vision Language Models with streaming datasets - ideal for large image-text datasets.
Script: vlm-streaming-sft-unsloth-qwen.py
Default model: unsloth/Qwen3-VL-8B-Instruct-unsloth-bnb-4bit
Example dataset: davanstrien/iconclass-vlm-sft
Note: This script uses pinned dependencies (
transformers==4.57.1,trl==0.22.2) matching the official Unsloth Qwen3-VL notebook for maximum compatibility.
Quick Start
# Run on HF Jobs (recommended)
hf jobs uv run \
--flavor a100-large \
--secrets HF_TOKEN \
-- \
https://huggingface.co/datasets/uv-scripts/training/raw/main/vlm-streaming-sft-unsloth-qwen.py \
--max-steps 500 \
--output-repo your-username/vlm-finetuned
# With Trackio monitoring dashboard
hf jobs uv run \
--flavor a100-large \
--secrets HF_TOKEN \
-- \
https://huggingface.co/datasets/uv-scripts/training/raw/main/vlm-streaming-sft-unsloth-qwen.py \
--max-steps 500 \
--output-repo your-username/vlm-finetuned \
--trackio-space your-username/trackio
Why Streaming for VLMs?
- No disk space needed - images stream directly from Hub
- Works with massive datasets - train on datasets larger than your storage
- Memory efficient - Unsloth uses ~60% less VRAM
- 2x faster - Unsloth optimizations for Qwen3-VL
Verified Performance
Tested on HF Jobs with A100-80GB:
| Setting | Value |
|---|---|
| Model | Qwen3-VL-8B (4-bit) |
| Dataset | iconclass-vlm-sft |
| Speed | ~3s/step |
| 50 steps | ~3 minutes |
| Starting loss | 4.3 |
| Final loss | ~0.85 |
Options
| Argument | Default | Description |
|---|---|---|
--base-model |
unsloth/Qwen3-VL-8B-Instruct-unsloth-bnb-4bit |
Base VLM model |
--dataset |
davanstrien/iconclass-vlm-sft |
Dataset with images + messages |
--max-steps |
500 | Training steps (required for streaming) |
--batch-size |
2 | Per-device batch size |
--gradient-accumulation |
4 | Gradient accumulation steps |
--learning-rate |
2e-4 | Learning rate |
--lora-r |
16 | LoRA rank |
--lora-alpha |
16 | LoRA alpha (same as r per Unsloth notebook) |
--output-repo |
Required | Where to push model |
--trackio-space |
None | HF Space for Trackio dashboard |
Dataset Format
The script works with any dataset that has images and messages columns in the standard VLM conversation format:
{
"images": [<PIL.Image>], # Single image or list of images
"messages": [
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe this image"}]},
{"role": "assistant", "content": [{"type": "text", "text": "The image shows..."}]}
]
}
Compatible datasets:
davanstrien/iconclass-vlm-sft- Art iconography classification- Any dataset following the Unsloth VLM format
Calculating Steps from Dataset Size
Since streaming datasets don't expose their length, use this formula:
steps = dataset_size / (batch_size * gradient_accumulation)
For example, with 10,000 samples, batch_size=2, gradient_accumulation=4:
steps = 10000 / (2 * 4) = 1250 steps for 1 epoch
π Running on HF Jobs
# Basic usage
hf jobs uv run latin-llm-streaming.py --flavor a100-large --secrets HF_TOKEN
# With timeout for long training
hf jobs uv run latin-llm-streaming.py --flavor a100-large --timeout 2h --secrets HF_TOKEN
# Pass script arguments after --
hf jobs uv run latin-llm-streaming.py --flavor a100-large -- --max-steps 1000 --batch-size 8
Available Flavors
a100-large- 80GB VRAM (recommended)a10g-large- 24GB VRAMt4-small- 16GB VRAM
π Resources
- Unsloth - 2x faster training
- HF Jobs Docs
- Datasets Streaming
- Streaming Datasets Blog
Made with π¦₯ Unsloth
- Downloads last month
- 51