Model Card for Model ID
Model Description
This is a fine-tuned version of aya-expanse-8b for Token-level Language Identification (LID) on Hinglish (Hindi-English code-mixed) text. It performs token-wise classification into three categories: en (English), hi (Hindi), or ot (Other).
The model supports mixed Roman and Devanagari scripts and is designed for identifying language switches at the word level in natural code-mixed content.
Achieves 94.75 F1 on the COMI-LINGUA LID test set (5K instances), outperforming zero-shot inference from strong closed-source LLMs (e.g., gpt-4o: 92.7 F1) and traditional tools (Microsoft LID: 74.4 F1).
- Model type: LoRA-adapted Transformer LLM (8B params, ~32M trainable)
- Finetuned from model: CohereForAI/aya-expanse-8b
Model Sources
- Paper: COMI-LINGUA: Expert Annotated Large-Scale Dataset for Multitask NLP in Hindi-English Code-Mixing
- Demo: Integrated in Demo Portal
Uses
Token-level LID in Hinglish pipelines (e.g., preprocessing for downstream tasks in social media analysis and chatbots).
Helps detect language switches in code-mixed user-generated content.
Example inference prompt:
Identify the language of each token (en = English, hi = Hindi, ot = Other) in: "New Delhi/Alive News : आज के दिन में इंडिया की टीम ने ऑस्ट्रेलिया को हराया। #INDvAUS"
Output: [{'New': 'en'}, {'Delhi': 'en'}, {'/', 'ot'}, {'Alive': 'en'}, {'News': 'en'}, {':': 'ot'}, {'आज': 'hi'}, {'के': 'hi'}, {'दिन': 'hi'}, {'में': 'hi'}, {'इंडिया': 'en'}, {'की': 'hi'}, {'टीम': 'en'}, {'ने': 'hi'}, {'ऑस्ट्रेलिया': 'en'}, {'को': 'hi'}, {'हराया': 'hi'}, {'।': 'ot'}, {'#INDvAUS': 'ot'}]
Training Details
Training Data
Training Procedure
Preprocessing
Tokenized with base tokenizer; instruction templates + few-shot examples. Filtered: ≥5 tokens, no hate/non-Hinglish, mostly code-mixed content.
Training Hyperparameters
- Regime: PEFT LoRA (rank=32, alpha=64, dropout=0.1)
- Epochs: 3
- Batch: 4 (accum=8, effective=32)
- LR: 2e-4 (cosine + warmup=0.1)
- Weight decay: 0.01
Evaluation
Testing Data
COMI-LINGUA LID test set (5K instances).
Metrics
Macro Precision / Recall / F1 (token-level).
Results
| Setting | P | R | F1 |
|---|---|---|---|
| Zero-shot | 51.08 | 70.55 | 59.05 |
| One-shot | 73.03 | 71.07 | 70.48 |
| Fine-tuned | 87.45 | 86.92 | 94.90 |
Summary: Competitive with or better than leading closed-source LLMs in zero/one-shot settings; establishes strong baseline/SOTA among open-weight fine-tuned models for Hinglish token-level LID.
Bias, Risks, and Limitations
This model is a research preview and is subject to ongoing iterative updates. As such, it provides only limited safety measures.
Model Card Contact
Lingo Research Group at IIT Gandhinagar, India
Mail at: lingo@iitgn.ac.in
Citation
If you use this model, please cite the following work:
@inproceedings{sheth-etal-2025-comi,
title = "{COMI}-{LINGUA}: Expert Annotated Large-Scale Dataset for Multitask {NLP} in {H}indi-{E}nglish Code-Mixing",
author = "Sheth, Rajvee and
Beniwal, Himanshu and
Singh, Mayank",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.422/",
pages = "7973--7992",
ISBN = "979-8-89176-335-7",
}
- Downloads last month
- 82
Model tree for LingoIITGN/COMI-LINGUA-LID
Base model
CohereLabs/aya-expanse-8b