Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from huggingface_hub import hf_hub_download
|
| 3 |
+
from llama_cpp import Llama
|
| 4 |
+
|
| 5 |
+
# Model configuration
|
| 6 |
+
MODEL_NAME = "qwen2.5-7b-instruct-q4_k_m.gguf"
|
| 7 |
+
MODEL_REPO = "Qwen/Qwen2.5-7B-Instruct-GGUF"
|
| 8 |
+
|
| 9 |
+
def load_model():
|
| 10 |
+
"""Download and load the GGUF model with CPU optimizations."""
|
| 11 |
+
print(f"Downloading model {MODEL_NAME} from {MODEL_REPO}...")
|
| 12 |
+
|
| 13 |
+
# Download the model (cached after first download)
|
| 14 |
+
model_path = hf_hub_download(
|
| 15 |
+
repo_id=MODEL_REPO,
|
| 16 |
+
filename=MODEL_NAME,
|
| 17 |
+
resume_download=True
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
print(f"Model downloaded to: {model_path}")
|
| 21 |
+
print("Loading model... This may take 30-60 seconds.")
|
| 22 |
+
|
| 23 |
+
# Initialize Llama with CPU optimizations
|
| 24 |
+
llm = Llama(
|
| 25 |
+
model_path=model_path,
|
| 26 |
+
n_ctx=2048, # Context length (user requirement)
|
| 27 |
+
n_threads=8, # CPU threads for inference (user requirement)
|
| 28 |
+
n_batch=512, # Batch size for processing
|
| 29 |
+
verbose=False, # Suppress logging
|
| 30 |
+
# CPU optimization flags
|
| 31 |
+
use_mmap=True, # Memory mapping for faster loading
|
| 32 |
+
use_mlock=False, # Don't lock memory (not needed for CPU tier)
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
print("Model loaded successfully!")
|
| 36 |
+
return llm
|
| 37 |
+
|
| 38 |
+
# Global model instance (loaded at startup)
|
| 39 |
+
llm = load_model()
|
| 40 |
+
|
| 41 |
+
def generate_response(message, history):
|
| 42 |
+
"""
|
| 43 |
+
Generate a response using the Qwen model.
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
message: The latest user message
|
| 47 |
+
history: List of previous conversation pairs
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
str: Generated assistant response
|
| 51 |
+
"""
|
| 52 |
+
try:
|
| 53 |
+
# Build message list from history
|
| 54 |
+
messages = []
|
| 55 |
+
|
| 56 |
+
# Add system message for instruction following
|
| 57 |
+
messages.append({
|
| 58 |
+
"role": "system",
|
| 59 |
+
"content": "You are Qwen, a helpful assistant."
|
| 60 |
+
})
|
| 61 |
+
|
| 62 |
+
# Add conversation history
|
| 63 |
+
for user_msg, assistant_msg in history:
|
| 64 |
+
if user_msg:
|
| 65 |
+
messages.append({"role": "user", "content": user_msg})
|
| 66 |
+
if assistant_msg:
|
| 67 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
| 68 |
+
|
| 69 |
+
# Add current user message
|
| 70 |
+
messages.append({"role": "user", "content": message})
|
| 71 |
+
|
| 72 |
+
# Generate response
|
| 73 |
+
response = llm.create_chat_completion(
|
| 74 |
+
messages=messages,
|
| 75 |
+
max_tokens=512,
|
| 76 |
+
temperature=0.7,
|
| 77 |
+
top_p=0.95,
|
| 78 |
+
stream=False
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Extract and return the assistant's message
|
| 82 |
+
return response["choices"][0]["message"]["content"]
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
print(f"Error generating response: {e}")
|
| 86 |
+
return f"Sorry, an error occurred: {str(e)}"
|
| 87 |
+
|
| 88 |
+
# Create Gradio ChatInterface
|
| 89 |
+
demo = gr.ChatInterface(
|
| 90 |
+
fn=generate_response,
|
| 91 |
+
title="Qwen2.5-7B-Instruct Private API",
|
| 92 |
+
description=(
|
| 93 |
+
"A private API server running Qwen2.5-7B-Instruct-GGUF (Q4_K_M) on CPU. "
|
| 94 |
+
"Model loading may take 30-60 seconds on first run. "
|
| 95 |
+
f"Context length: 2048 tokens, Threads: 8"
|
| 96 |
+
),
|
| 97 |
+
theme=gr.themes.Base(),
|
| 98 |
+
examples=[
|
| 99 |
+
["What is machine learning?"],
|
| 100 |
+
["Write a Python function to calculate fibonacci numbers"],
|
| 101 |
+
["Explain quantum computing in simple terms"],
|
| 102 |
+
],
|
| 103 |
+
cache_examples=False,
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
if __name__ == "__main__":
|
| 107 |
+
# Launch the Gradio app
|
| 108 |
+
# In HF Spaces, this will run on the public URL (set Space to Private for privacy)
|
| 109 |
+
demo.launch(
|
| 110 |
+
server_name="0.0.0.0",
|
| 111 |
+
server_port=7860,
|
| 112 |
+
share=False
|
| 113 |
+
)
|