Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLLM-based Multi-Agent Blackboard System for Information Discovery in Data Science
The rapid advancement of Large Language Models (LLMs) has opened new opportunities in data science, yet their practical deployment is often constrained by the challenge of discovering relevant data within large heterogeneous data lakes. Existing methods struggle with this: single-agent systems are quickly overwhelmed by large, heterogeneous files in the large data lakes, while multi-agent systems designed based on a master-slave paradigm depend on a rigid central controller for task allocation that requires precise knowledge of each sub-agent's capabilities. To address these limitations, we propose a novel multi-agent communication paradigm inspired by the blackboard architecture for traditional AI models. In this framework, a central agent posts requests to a shared blackboard, and autonomous subordinate agents -- either responsible for a partition of the data lake or general information retrieval -- volunteer to respond based on their capabilities. This design improves scalability and flexibility by eliminating the need for a central coordinator to have prior knowledge of all sub-agents' expertise. We evaluate our method on three benchmarks that require explicit data discovery: KramaBench and modified versions of DS-Bench and DA-Code to incorporate data discovery. Experimental results demonstrate that the blackboard architecture substantially outperforms baselines, including RAG and the master-slave multi-agent paradigm, achieving between 13% to 57% relative improvement in end-to-end task success and up to a 9% relative gain in F1 score for data discovery over the best-performing baselines across both proprietary and open-source LLMs. Our findings establish the blackboard paradigm as a scalable and generalizable communication framework for multi-agent systems.
A Survey of Data Agents: Emerging Paradigm or Overstated Hype?
The rapid advancement of large language models (LLMs) has spurred the emergence of data agents--autonomous systems designed to orchestrate Data + AI ecosystems for tackling complex data-related tasks. However, the term "data agent" currently suffers from terminological ambiguity and inconsistent adoption, conflating simple query responders with sophisticated autonomous architectures. This terminological ambiguity fosters mismatched user expectations, accountability challenges, and barriers to industry growth. Inspired by the SAE J3016 standard for driving automation, this survey introduces the first systematic hierarchical taxonomy for data agents, comprising six levels that delineate and trace progressive shifts in autonomy, from manual operations (L0) to a vision of generative, fully autonomous data agents (L5), thereby clarifying capability boundaries and responsibility allocation. Through this lens, we offer a structured review of existing research arranged by increasing autonomy, encompassing specialized data agents for data management, preparation, and analysis, alongside emerging efforts toward versatile, comprehensive systems with enhanced autonomy. We further analyze critical evolutionary leaps and technical gaps for advancing data agents, especially the ongoing L2-to-L3 transition, where data agents evolve from procedural execution to autonomous orchestration. Finally, we conclude with a forward-looking roadmap, envisioning the advent of proactive, generative data agents.
PublicAgent: Multi-Agent Design Principles From an LLM-Based Open Data Analysis Framework
Open data repositories hold potential for evidence-based decision-making, yet are inaccessible to non-experts lacking expertise in dataset discovery, schema mapping, and statistical analysis. Large language models show promise for individual tasks, but end-to-end analytical workflows expose fundamental limitations: attention dilutes across growing contexts, specialized reasoning patterns interfere, and errors propagate undetected. We present PublicAgent, a multi-agent framework that addresses these limitations through decomposition into specialized agents for intent clarification, dataset discovery, analysis, and reporting. This architecture maintains focused attention within agent contexts and enables validation at each stage. Evaluation across five models and 50 queries derives five design principles for multi-agent LLM systems. First, specialization provides value independent of model strength--even the strongest model shows 97.5% agent win rates, with benefits orthogonal to model scale. Second, agents divide into universal (discovery, analysis) and conditional (report, intent) categories. Universal agents show consistent effectiveness (std dev 12.4%) while conditional agents vary by model (std dev 20.5%). Third, agents mitigate distinct failure modes--removing discovery or analysis causes catastrophic failures (243-280 instances), while removing report or intent causes quality degradation. Fourth, architectural benefits persist across task complexity with stable win rates (86-92% analysis, 84-94% discovery), indicating workflow management value rather than reasoning enhancement. Fifth, wide variance in agent effectiveness across models (42-96% for analysis) requires model-aware architecture design. These principles guide when and why specialization is necessary for complex analytical workflows while enabling broader access to public data through natural language interfaces.
Agentic Web: Weaving the Next Web with AI Agents
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web, a new phase of the internet defined by autonomous, goal-driven interactions. In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users. This transition from human-driven to machine-to-machine interaction allows intent to be delegated, relieving users from routine digital operations and enabling a more interactive, automated web experience. In this paper, we present a structured framework for understanding and building the Agentic Web. We trace its evolution from the PC and Mobile Web eras and identify the core technological foundations that support this shift. Central to our framework is a conceptual model consisting of three key dimensions: intelligence, interaction, and economics. These dimensions collectively enable the capabilities of AI agents, such as retrieval, recommendation, planning, and collaboration. We analyze the architectural and infrastructural challenges involved in creating scalable agentic systems, including communication protocols, orchestration strategies, and emerging paradigms such as the Agent Attention Economy. We conclude by discussing the potential applications, societal risks, and governance issues posed by agentic systems, and outline research directions for developing open, secure, and intelligent ecosystems shaped by both human intent and autonomous agent behavior. A continuously updated collection of relevant studies for agentic web is available at: https://github.com/SafeRL-Lab/agentic-web.
Matrix: Peer-to-Peer Multi-Agent Synthetic Data Generation Framework
Synthetic data has become increasingly important for training large language models, especially when real data is scarce, expensive, or privacy-sensitive. Many such generation tasks require coordinated multi-agent workflows, where specialized agents collaborate to produce data that is higher quality, more diverse, and structurally richer. However, existing frameworks for multi-agent synthesis often depend on a centralized orchestrator, creating scalability bottlenecks, or are hardcoded for specific domains, limiting flexibility. We present Matrix, a decentralized framework that represents both control and data flow as serialized messages passed through distributed queues. This peer-to-peer design eliminates the central orchestrator. Each task progresses independently through lightweight agents, while compute-intensive operations, such as LLM inference or containerized environments, are handled by distributed services. Built on Ray, Matrix scales to tens of thousands of concurrent agentic workflows and provides a modular, configurable design that enables easy adaptation to a wide range of data generation workflows. We evaluate Matrix across diverse synthesis scenarios, such as multi-agent collaborative dialogue, web-based reasoning data extraction, and tool-use trajectory generation in customer service environments. In all cases, Matrix achieves 2--15times higher data generation throughput under identical hardware resources, without compromising output quality.
Agent-E: From Autonomous Web Navigation to Foundational Design Principles in Agentic Systems
AI Agents are changing the way work gets done, both in consumer and enterprise domains. However, the design patterns and architectures to build highly capable agents or multi-agent systems are still developing, and the understanding of the implication of various design choices and algorithms is still evolving. In this paper, we present our work on building a novel web agent, Agent-E Our code is available at \url{https://github.com/EmergenceAI/Agent-E}. Agent-E introduces numerous architectural improvements over prior state-of-the-art web agents such as hierarchical architecture, flexible DOM distillation and denoising method, and the concept of change observation to guide the agent towards more accurate performance. We first present the results of an evaluation of Agent-E on WebVoyager benchmark dataset and show that Agent-E beats other SOTA text and multi-modal web agents on this benchmark in most categories by 10-30\%. We then synthesize our learnings from the development of Agent-E into general design principles for developing agentic systems. These include the use of domain-specific primitive skills, the importance of distillation and de-noising of environmental observations, the advantages of a hierarchical architecture, and the role of agentic self-improvement to enhance agent efficiency and efficacy as the agent gathers experience.
Deep Research Agents: A Systematic Examination And Roadmap
The rapid progress of Large Language Models (LLMs) has given rise to a new category of autonomous AI systems, referred to as Deep Research (DR) agents. These agents are designed to tackle complex, multi-turn informational research tasks by leveraging a combination of dynamic reasoning, adaptive long-horizon planning, multi-hop information retrieval, iterative tool use, and the generation of structured analytical reports. In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute Deep Research agents. We begin by reviewing information acquisition strategies, contrasting API-based retrieval methods with browser-based exploration. We then examine modular tool-use frameworks, including code execution, multimodal input processing, and the integration of Model Context Protocols (MCPs) to support extensibility and ecosystem development. To systematize existing approaches, we propose a taxonomy that differentiates between static and dynamic workflows, and we classify agent architectures based on planning strategies and agent composition, including single-agent and multi-agent configurations. We also provide a critical evaluation of current benchmarks, highlighting key limitations such as restricted access to external knowledge, sequential execution inefficiencies, and misalignment between evaluation metrics and the practical objectives of DR agents. Finally, we outline open challenges and promising directions for future research. A curated and continuously updated repository of DR agent research is available at: {https://github.com/ai-agents-2030/awesome-deep-research-agent}.
AgentNet: Decentralized Evolutionary Coordination for LLM-based Multi-Agent Systems
The rapid advancement of large language models (LLMs) has enabled the development of multi-agent systems where multiple LLM-based agents collaborate on complex tasks. However, existing systems often rely on centralized coordination, leading to scalability bottlenecks, reduced adaptability, and single points of failure. Privacy and proprietary knowledge concerns further hinder cross-organizational collaboration, resulting in siloed expertise. We propose AgentNet, a decentralized, Retrieval-Augmented Generation (RAG)-based framework that enables LLM-based agents to specialize, evolve, and collaborate autonomously in a dynamically structured Directed Acyclic Graph (DAG). Unlike prior approaches with static roles or centralized control, AgentNet allows agents to adjust connectivity and route tasks based on local expertise and context. AgentNet introduces three key innovations: (1) a fully decentralized coordination mechanism that eliminates the need for a central orchestrator, enhancing robustness and emergent intelligence; (2) dynamic agent graph topology that adapts in real time to task demands, ensuring scalability and resilience; and (3) a retrieval-based memory system for agents that supports continual skill refinement and specialization. By minimizing centralized control and data exchange, AgentNet enables fault-tolerant, privacy-preserving collaboration across organizations. Experiments show that AgentNet achieves higher task accuracy than both single-agent and centralized multi-agent baselines.
Efficient and Scalable Agentic AI with Heterogeneous Systems
AI agents are emerging as a dominant workload in a wide range of applications, promising to be the vehicle that delivers the promised benefits of AI to enterprises and consumers. Unlike conventional software or static inference, agentic workloads are dynamic and structurally complex. Often these agents are directed graphs of compute and IO operations that span multi-modal data input and conversion), data processing and context gathering (e.g vector DB lookups), multiple LLM inferences, tool calls, etc. To scale AI agent usage, we need efficient and scalable deployment and agent-serving infrastructure. To tackle this challenge, in this paper, we present a system design for dynamic orchestration of AI agent workloads on heterogeneous compute infrastructure spanning CPUs and accelerators, both from different vendors and across different performance tiers within a single vendor. The system delivers several building blocks: a framework for planning and optimizing agentic AI execution graphs using cost models that account for compute, memory, and bandwidth constraints of different HW; a MLIR based representation and compilation system that can decompose AI agent execution graphs into granular operators and generate code for different HW options; and a dynamic orchestration system that can place the granular components across a heterogeneous compute infrastructure and stitch them together while meeting an end-to-end SLA. Our design performs a systems level TCO optimization and preliminary results show that leveraging a heterogeneous infrastructure can deliver significant TCO benefits. A preliminary surprising finding is that for some workloads a heterogeneous combination of older generation GPUs with newer accelerators can deliver similar TCO as the latest generation homogenous GPU infrastructure design, potentially extending the life of deployed infrastructure.
A Taxonomy of Architecture Options for Foundation Model-based Agents: Analysis and Decision Model
The rapid advancement of AI technology has led to widespread applications of agent systems across various domains. However, the need for detailed architecture design poses significant challenges in designing and operating these systems. This paper introduces a taxonomy focused on the architectures of foundation-model-based agents, addressing critical aspects such as functional capabilities and non-functional qualities. We also discuss the operations involved in both design-time and run-time phases, providing a comprehensive view of architectural design and operational characteristics. By unifying and detailing these classifications, our taxonomy aims to improve the design of foundation-model-based agents. Additionally, the paper establishes a decision model that guides critical design and runtime decisions, offering a structured approach to enhance the development of foundation-model-based agents. Our contributions include providing a structured architecture design option and guiding the development process of foundation-model-based agents, thereby addressing current fragmentation in the field.
AI Agentic workflows and Enterprise APIs: Adapting API architectures for the age of AI agents
The rapid advancement of Generative AI has catalyzed the emergence of autonomous AI agents, presenting unprecedented challenges for enterprise computing infrastructures. Current enterprise API architectures are predominantly designed for human-driven, predefined interaction patterns, rendering them ill-equipped to support intelligent agents' dynamic, goal-oriented behaviors. This research systematically examines the architectural adaptations for enterprise APIs to support AI agentic workflows effectively. Through a comprehensive analysis of existing API design paradigms, agent interaction models, and emerging technological constraints, the paper develops a strategic framework for API transformation. The study employs a mixed-method approach, combining theoretical modeling, comparative analysis, and exploratory design principles to address critical challenges in standardization, performance, and intelligent interaction. The proposed research contributes a conceptual model for next-generation enterprise APIs that can seamlessly integrate with autonomous AI agent ecosystems, offering significant implications for future enterprise computing architectures.
DeepAnalyze: Agentic Large Language Models for Autonomous Data Science
Autonomous data science, from raw data sources to analyst-grade deep research reports, has been a long-standing challenge, and is now becoming feasible with the emergence of powerful large language models (LLMs). Recent workflow-based data agents have shown promising results on specific data tasks but remain fundamentally limited in achieving fully autonomous data science due to their reliance on predefined workflows. In this paper, we introduce DeepAnalyze-8B, the first agentic LLM designed for autonomous data science, capable of automatically completing the end-toend pipeline from data sources to analyst-grade deep research reports. To tackle high-complexity data science tasks, we propose a curriculum-based agentic training paradigm that emulates the learning trajectory of human data scientists, enabling LLMs to progressively acquire and integrate multiple capabilities in real-world environments. We also introduce a data-grounded trajectory synthesis framework that constructs high-quality training data. Through agentic training, DeepAnalyze learns to perform a broad spectrum of data tasks, ranging from data question answering and specialized analytical tasks to open-ended data research. Experiments demonstrate that, with only 8B parameters, DeepAnalyze outperforms previous workflow-based agents built on most advanced proprietary LLMs. The model, code, and training data of DeepAnalyze are open-sourced, paving the way toward autonomous data science.
ROMAS: A Role-Based Multi-Agent System for Database monitoring and Planning
In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities in data analytics when integrated with Multi-Agent Systems (MAS). However, these systems often struggle with complex tasks that involve diverse functional requirements and intricate data processing challenges, necessitating customized solutions that lack broad applicability. Furthermore, current MAS fail to emulate essential human-like traits such as self-planning, self-monitoring, and collaborative work in dynamic environments, leading to inefficiencies and resource wastage. To address these limitations, we propose ROMAS, a novel Role-Based M ulti-A gent System designed to adapt to various scenarios while enabling low code development and one-click deployment. ROMAS has been effectively deployed in DB-GPT [Xue et al., 2023a, 2024b], a well-known project utilizing LLM-powered database analytics, showcasing its practical utility in real-world scenarios. By integrating role-based collaborative mechanisms for self-monitoring and self-planning, and leveraging existing MAS capabilities to enhance database interactions, ROMAS offers a more effective and versatile solution. Experimental evaluations of ROMAS demonstrate its superiority across multiple scenarios, highlighting its potential to advance the field of multi-agent data analytics.
Control Plane as a Tool: A Scalable Design Pattern for Agentic AI Systems
Agentic AI systems represent a new frontier in artificial intelligence, where agents often based on large language models(LLMs) interact with tools, environments, and other agents to accomplish tasks with a degree of autonomy. These systems show promise across a range of domains, but their architectural underpinnings remain immature. This paper conducts a comprehensive review of the types of agents, their modes of interaction with the environment, and the infrastructural and architectural challenges that emerge. We identify a gap in how these systems manage tool orchestration at scale and propose a reusable design abstraction: the "Control Plane as a Tool" pattern. This pattern allows developers to expose a single tool interface to an agent while encapsulating modular tool routing logic behind it. We position this pattern within the broader context of agent design and argue that it addresses several key challenges in scaling, safety, and extensibility.
The Landscape of Emerging AI Agent Architectures for Reasoning, Planning, and Tool Calling: A Survey
This survey paper examines the recent advancements in AI agent implementations, with a focus on their ability to achieve complex goals that require enhanced reasoning, planning, and tool execution capabilities. The primary objectives of this work are to a) communicate the current capabilities and limitations of existing AI agent implementations, b) share insights gained from our observations of these systems in action, and c) suggest important considerations for future developments in AI agent design. We achieve this by providing overviews of single-agent and multi-agent architectures, identifying key patterns and divergences in design choices, and evaluating their overall impact on accomplishing a provided goal. Our contribution outlines key themes when selecting an agentic architecture, the impact of leadership on agent systems, agent communication styles, and key phases for planning, execution, and reflection that enable robust AI agent systems.
Multi-Agent Data Visualization and Narrative Generation
Recent advancements in the field of AI agents have impacted the way we work, enabling greater automation and collaboration between humans and agents. In the data visualization field, multi-agent systems can be useful for employing agents throughout the entire data-to-communication pipeline. We present a lightweight multi-agent system that automates the data analysis workflow, from data exploration to generating coherent visual narratives for insight communication. Our approach combines a hybrid multi-agent architecture with deterministic components, strategically externalizing critical logic from LLMs to improve transparency and reliability. The system delivers granular, modular outputs that enable surgical modifications without full regeneration, supporting sustainable human-AI collaboration. We evaluated our system across 4 diverse datasets, demonstrating strong generalizability, narrative quality, and computational efficiency with minimal dependencies.
Internet of Agents: Fundamentals, Applications, and Challenges
With the rapid proliferation of large language models and vision-language models, AI agents have evolved from isolated, task-specific systems into autonomous, interactive entities capable of perceiving, reasoning, and acting without human intervention. As these agents proliferate across virtual and physical environments, from virtual assistants to embodied robots, the need for a unified, agent-centric infrastructure becomes paramount. In this survey, we introduce the Internet of Agents (IoA) as a foundational framework that enables seamless interconnection, dynamic discovery, and collaborative orchestration among heterogeneous agents at scale. We begin by presenting a general IoA architecture, highlighting its hierarchical organization, distinguishing features relative to the traditional Internet, and emerging applications. Next, we analyze the key operational enablers of IoA, including capability notification and discovery, adaptive communication protocols, dynamic task matching, consensus and conflict-resolution mechanisms, and incentive models. Finally, we identify open research directions toward building resilient and trustworthy IoA ecosystems.
Agent Data Protocol: Unifying Datasets for Diverse, Effective Fine-tuning of LLM Agents
Public research results on large-scale supervised finetuning of AI agents remain relatively rare, since the collection of agent training data presents unique challenges. In this work, we argue that the bottleneck is not a lack of underlying data sources, but that a large variety of data is fragmented across heterogeneous formats, tools, and interfaces. To this end, we introduce the agent data protocol (ADP), a light-weight representation language that serves as an "interlingua" between agent datasets in diverse formats and unified agent training pipelines downstream. The design of ADP is expressive enough to capture a large variety of tasks, including API/tool use, browsing, coding, software engineering, and general agentic workflows, while remaining simple to parse and train on without engineering at a per-dataset level. In experiments, we unified a broad collection of 13 existing agent training datasets into ADP format, and converted the standardized ADP data into training-ready formats for multiple agent frameworks. We performed SFT on these data, and demonstrated an average performance gain of ~20% over corresponding base models, and delivers state-of-the-art or near-SOTA performance on standard coding, browsing, tool use, and research benchmarks, without domain-specific tuning. All code and data are released publicly, in the hope that ADP could help lower the barrier to standardized, scalable, and reproducible agent training.
Can LLMs Clean Up Your Mess? A Survey of Application-Ready Data Preparation with LLMs
Data preparation aims to denoise raw datasets, uncover cross-dataset relationships, and extract valuable insights from them, which is essential for a wide range of data-centric applications. Driven by (i) rising demands for application-ready data (e.g., for analytics, visualization, decision-making), (ii) increasingly powerful LLM techniques, and (iii) the emergence of infrastructures that facilitate flexible agent construction (e.g., using Databricks Unity Catalog), LLM-enhanced methods are rapidly becoming a transformative and potentially dominant paradigm for data preparation. By investigating hundreds of recent literature works, this paper presents a systematic review of this evolving landscape, focusing on the use of LLM techniques to prepare data for diverse downstream tasks. First, we characterize the fundamental paradigm shift, from rule-based, model-specific pipelines to prompt-driven, context-aware, and agentic preparation workflows. Next, we introduce a task-centric taxonomy that organizes the field into three major tasks: data cleaning (e.g., standardization, error processing, imputation), data integration (e.g., entity matching, schema matching), and data enrichment (e.g., data annotation, profiling). For each task, we survey representative techniques, and highlight their respective strengths (e.g., improved generalization, semantic understanding) and limitations (e.g., the prohibitive cost of scaling LLMs, persistent hallucinations even in advanced agents, the mismatch between advanced methods and weak evaluation). Moreover, we analyze commonly used datasets and evaluation metrics (the empirical part). Finally, we discuss open research challenges and outline a forward-looking roadmap that emphasizes scalable LLM-data systems, principled designs for reliable agentic workflows, and robust evaluation protocols.
An Outlook on the Opportunities and Challenges of Multi-Agent AI Systems
A multi-agent AI system (MAS) is composed of multiple autonomous agents that interact, exchange information, and make decisions based on internal generative models. Recent advances in large language models and tool-using agents have made MAS increasingly practical in areas like scientific discovery and collaborative automation. However, key questions remain: When are MAS more effective than single-agent systems? What new safety risks arise from agent interactions? And how should we evaluate their reliability and structure? This paper outlines a formal framework for analyzing MAS, focusing on two core aspects: effectiveness and safety. We explore whether MAS truly improve robustness, adaptability, and performance, or merely repackage known techniques like ensemble learning. We also study how inter-agent dynamics may amplify or suppress system vulnerabilities. While MAS are relatively new to the signal processing community, we envision them as a powerful abstraction that extends classical tools like distributed estimation and sensor fusion to higher-level, policy-driven inference. Through experiments on data science automation, we highlight the potential of MAS to reshape how signal processing systems are designed and trusted.
Planet as a Brain: Towards Internet of AgentSites based on AIOS Server
The internet is undergoing a historical transformation from the "Internet of Websites" to the "Internet of AgentSites." While traditional Websites served as the foundation for information hosting and dissemination, a new frontier is emerging where AgentSites serve as the hubs of the internet, where each AgentSite hosts one or more AI agents that receive tasks, address them, and deliver actionable solutions, marking a significant shift in the digital landscape and representing the next generation of online ecosystems. Under this vision, AIOS, the AI Agent Operating System, serves as the server for the development, deployment and execution of AI agents, which is a fundamental infrastructure for the Internet of Agentsites. In this paper, we introduce AIOS Server, a runtime framework to host agents and enable global-scale collaboration among decentralized agents. AIOS Server provides a communication protocol leveraging the Model Context Protocol (MCP) and JSON-RPC to enable agent-agent or human-agent interactions. Each AIOS node operates as a server to host and execute agents, while supporting peer-to-peer coordination without reliance on centralized orchestration. Based on AIOS Server, we further present the world's first practically deployed Internet of Agentsites (AIOS-IoA), including AgentHub for agent registration and discovery and AgentChat for interactive communication, at https://planet.aios.foundation. The agent discovery mechanism based on Distributed Hash Tables (DHT) and a Gossip protocol serves as the search engine for the internet of agentsites. This work provides a practical foundation for building the Internet of Agentsites-a new paradigm where autonomous agents become first-class citizens of the web. The implementation is available at https://github.com/agiresearch/AIOS.Server and is integrated into the AIOS main branch at https://github.com/agiresearch/AIOS.
Scaling Generalist Data-Analytic Agents
Data-analytic agents are emerging as a key catalyst for automated scientific discovery and for the vision of Innovating AI. Current approaches, however, rely heavily on prompt engineering over proprietary models, while open-source models struggle to face diverse-format, large-scale data files and long-horizon, multi-step reasoning that real-world analytics demands. This paper introduces DataMind, a scalable data synthesis and agent training recipe designed to build generalist data-analytic agents. DataMind tackles three key challenges in building open-source data-analytic agents, including insufficient data resources, improper training strategy, and unstable code-based multi-turn rollout. Concretely, DataMind applies 1) a fine-grained task taxonomy and a recursive easy-to-hard task composition mechanism to increase the diversity and difficulty of synthesized queries; 2) a knowledge-augmented trajectory sampling strategy followed by model-based and rule-based filtering; 3) a dynamically adjustable training objective combining both SFT and RL losses; 4) a memory-frugal and stable code-based multi-turn rollout framework. Built on DataMind, we curate DataMind-12K, a high-quality trajectory set spanning diverse domains, task categories, and data file formats for data-analytic tasks. Trained on DataMind-12K, our DataMind-14B achieves state-of-the-art with an average score of 71.16% on multiple data analysis benchmarks, outperforming the strongest proprietary baselines DeepSeek-V3.1 and GPT-5. Our DataMind-7B also performs best among all open-source models with a score of 68.10%. We also incorporate some empirical insights gained from our exploratory trials into the analysis experiments, aiming to provide actionable insights about agentic training for the community. We will release DataMind-12K and DataMind-7B,14B for the community's future research.
FinRobot: Generative Business Process AI Agents for Enterprise Resource Planning in Finance
Enterprise Resource Planning (ERP) systems serve as the digital backbone of modern financial institutions, yet they continue to rely on static, rule-based workflows that limit adaptability, scalability, and intelligence. As business operations grow more complex and data-rich, conventional ERP platforms struggle to integrate structured and unstructured data in real time and to accommodate dynamic, cross-functional workflows. In this paper, we present the first AI-native, agent-based framework for ERP systems, introducing a novel architecture of Generative Business Process AI Agents (GBPAs) that bring autonomy, reasoning, and dynamic optimization to enterprise workflows. The proposed system integrates generative AI with business process modeling and multi-agent orchestration, enabling end-to-end automation of complex tasks such as budget planning, financial reporting, and wire transfer processing. Unlike traditional workflow engines, GBPAs interpret user intent, synthesize workflows in real time, and coordinate specialized sub-agents for modular task execution. We validate the framework through case studies in bank wire transfers and employee reimbursements, two representative financial workflows with distinct complexity and data modalities. Results show that GBPAs achieve up to 40% reduction in processing time, 94% drop in error rate, and improved regulatory compliance by enabling parallelism, risk control insertion, and semantic reasoning. These findings highlight the potential of GBPAs to bridge the gap between generative AI capabilities and enterprise-grade automation, laying the groundwork for the next generation of intelligent ERP systems.
Governed By Agents: A Survey On The Role Of Agentic AI In Future Computing Environments
The emergence of agentic Artificial Intelligence (AI), which can operate autonomously, demonstrate goal-directed behavior, and adaptively learn, indicates the onset of a massive change in today's computing infrastructure. This study investigates how agentic AI models' multiple characteristics may impact the architecture, governance, and operation under which computing environments function. Agentic AI has the potential to reduce reliance on extremely large (public) cloud environments due to resource efficiency, especially with processing and/or storage. The aforementioned characteristics provide us with an opportunity to canvas the likelihood of strategic migration in computing infrastructures away from massive public cloud services, towards more locally distributed architectures: edge computing and on-premises computing infrastructures. Many of these likely migrations will be spurred by factors like on-premises processing needs, diminished data consumption footprints, and cost savings. This study examines how a solution for implementing AI's autonomy could result in a re-architecture of the systems and model a departure from today's governance models to help us manage these increasingly autonomous agents, and an operational overhaul of processes over a very diverse computing systems landscape that bring together computing via cloud, edge, and on-premises computing solutions. To enable us to explore these intertwined decisions, it will be fundamentally important to understand how to best position agentic AI, and to navigate the future state of computing infrastructures.
A novel strategy for multi-resource load balancing in agent-based systems
The paper presents a multi-resource load balancing strategy which can be utilised within an agent-based system. This approach can assist system designers in their attempts to optimise the structure for complex enterprise architectures. In this system, the social behaviour of the agent and its adaptation abilities are applied to determine an optimal setup for a given configuration. All the methods have been developed to allow the agent's self-assessment. The proposed agent system has been implemented and the experiment results are presented here.
Agentic AI Frameworks: Architectures, Protocols, and Design Challenges
The emergence of Large Language Models (LLMs) has ushered in a transformative paradigm in artificial intelligence, Agentic AI, where intelligent agents exhibit goal-directed autonomy, contextual reasoning, and dynamic multi-agent coordination. This paper provides a systematic review and comparative analysis of leading Agentic AI frameworks, including CrewAI, LangGraph, AutoGen, Semantic Kernel, Agno, Google ADK, and MetaGPT, evaluating their architectural principles, communication mechanisms, memory management, safety guardrails, and alignment with service-oriented computing paradigms. Furthermore, we identify key limitations, emerging trends, and open challenges in the field. To address the issue of agent communication, we conduct an in-depth analysis of protocols such as the Contract Net Protocol (CNP), Agent-to-Agent (A2A), Agent Network Protocol (ANP), and Agora. Our findings not only establish a foundational taxonomy for Agentic AI systems but also propose future research directions to enhance scalability, robustness, and interoperability. This work serves as a comprehensive reference for researchers and practitioners working to advance the next generation of autonomous AI systems.
Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows?
Data science and engineering workflows often span multiple stages, from warehousing to orchestration, using tools like BigQuery, dbt, and Airbyte. As vision language models (VLMs) advance in multimodal understanding and code generation, VLM-based agents could potentially automate these workflows by generating SQL queries, Python code, and GUI operations. This automation can improve the productivity of experts while democratizing access to large-scale data analysis. In this paper, we introduce Spider2-V, the first multimodal agent benchmark focusing on professional data science and engineering workflows, featuring 494 real-world tasks in authentic computer environments and incorporating 20 enterprise-level professional applications. These tasks, derived from real-world use cases, evaluate the ability of a multimodal agent to perform data-related tasks by writing code and managing the GUI in enterprise data software systems. To balance realistic simulation with evaluation simplicity, we devote significant effort to developing automatic configurations for task setup and carefully crafting evaluation metrics for each task. Furthermore, we supplement multimodal agents with comprehensive documents of these enterprise data software systems. Our empirical evaluation reveals that existing state-of-the-art LLM/VLM-based agents do not reliably automate full data workflows (14.0% success). Even with step-by-step guidance, these agents still underperform in tasks that require fine-grained, knowledge-intensive GUI actions (16.2%) and involve remote cloud-hosted workspaces (10.6%). We hope that Spider2-V paves the way for autonomous multimodal agents to transform the automation of data science and engineering workflow. Our code and data are available at https://spider2-v.github.io.
CoDA: Agentic Systems for Collaborative Data Visualization
Deep research has revolutionized data analysis, yet data scientists still devote substantial time to manually crafting visualizations, highlighting the need for robust automation from natural language queries. However, current systems struggle with complex datasets containing multiple files and iterative refinement. Existing approaches, including simple single- or multi-agent systems, often oversimplify the task, focusing on initial query parsing while failing to robustly manage data complexity, code errors, or final visualization quality. In this paper, we reframe this challenge as a collaborative multi-agent problem. We introduce CoDA, a multi-agent system that employs specialized LLM agents for metadata analysis, task planning, code generation, and self-reflection. We formalize this pipeline, demonstrating how metadata-focused analysis bypasses token limits and quality-driven refinement ensures robustness. Extensive evaluations show CoDA achieves substantial gains in the overall score, outperforming competitive baselines by up to 41.5%. This work demonstrates that the future of visualization automation lies not in isolated code generation but in integrated, collaborative agentic workflows.
LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents
The integration of tools in LLM-based agents overcame the difficulties of standalone LLMs and traditional agents' limited capabilities. However, the conjunction of these technologies and the proposed enhancements in several state-of-the-art works followed a non-unified software architecture resulting in a lack of modularity. Indeed, they focused mainly on functionalities and overlooked the definition of the component's boundaries within the agent. This caused terminological and architectural ambiguities between researchers which we addressed in this paper by proposing a unified framework that establishes a clear foundation for LLM-based agents' development from both functional and software architectural perspectives. Our framework, LLM-Agent-UMF (LLM-based Agent Unified Modeling Framework), clearly distinguishes between the different components of an agent, setting LLMs, and tools apart from a newly introduced element: the core-agent, playing the role of the central coordinator of the agent which comprises five modules: planning, memory, profile, action, and security, the latter often neglected in previous works. Differences in the internal structure of core-agents led us to classify them into a taxonomy of passive and active types. Based on this, we proposed different multi-core agent architectures combining unique characteristics of various individual agents. For evaluation purposes, we applied this framework to a selection of state-of-the-art agents, thereby demonstrating its alignment with their functionalities and clarifying the overlooked architectural aspects. Moreover, we thoroughly assessed four of our proposed architectures by integrating distinctive agents into hybrid active/passive core-agents' systems. This analysis provided clear insights into potential improvements and highlighted the challenges involved in the combination of specific agents.
On the limits of agency in agent-based models
Agent-based modeling (ABM) seeks to understand the behavior of complex systems by simulating a collection of agents that act and interact within an environment. Their practical utility requires capturing realistic environment dynamics and adaptive agent behavior while efficiently simulating million-size populations. Recent advancements in large language models (LLMs) present an opportunity to enhance ABMs by using LLMs as agents with further potential to capture adaptive behavior. However, the computational infeasibility of using LLMs for large populations has hindered their widespread adoption. In this paper, we introduce AgentTorch -- a framework that scales ABMs to millions of agents while capturing high-resolution agent behavior using LLMs. We benchmark the utility of LLMs as ABM agents, exploring the trade-off between simulation scale and individual agency. Using the COVID-19 pandemic as a case study, we demonstrate how AgentTorch can simulate 8.4 million agents representing New York City, capturing the impact of isolation and employment behavior on health and economic outcomes. We compare the performance of different agent architectures based on heuristic and LLM agents in predicting disease waves and unemployment rates. Furthermore, we showcase AgentTorch's capabilities for retrospective, counterfactual, and prospective analyses, highlighting how adaptive agent behavior can help overcome the limitations of historical data in policy design. AgentTorch is an open-source project actively being used for policy-making and scientific discovery around the world. The framework is available here: github.com/AgentTorch/AgentTorch.
Multi-agent Architecture Search via Agentic Supernet
Large Language Model (LLM)-empowered multi-agent systems extend the cognitive boundaries of individual agents through disciplined collaboration and interaction, while constructing these systems often requires labor-intensive manual designs. Despite the availability of methods to automate the design of agentic workflows, they typically seek to identify a static, complex, one-size-fits-all system, which, however, fails to dynamically allocate inference resources based on the difficulty and domain of each query. To address this challenge, we shift away from the pursuit of a monolithic agentic system, instead optimizing the agentic supernet, a probabilistic and continuous distribution of agentic architectures. We introduce MaAS, an automated framework that samples query-dependent agentic systems from the supernet, delivering high-quality solutions and tailored resource allocation (e.g., LLM calls, tool calls, token cost). Comprehensive evaluation across six benchmarks demonstrates that MaAS (I) requires only 6sim45% of the inference costs of existing handcrafted or automated multi-agent systems, (II) surpasses them by 0.54%sim11.82%, and (III) enjoys superior cross-dataset and cross-LLM-backbone transferability.
Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks
Modern AI agents, driven by advances in large foundation models, promise to enhance our productivity and transform our lives by augmenting our knowledge and capabilities. To achieve this vision, AI agents must effectively plan, perform multi-step reasoning and actions, respond to novel observations, and recover from errors, to successfully complete complex tasks across a wide range of scenarios. In this work, we introduce Magentic-One, a high-performing open-source agentic system for solving such tasks. Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, plans, tracks progress, and re-plans to recover from errors. Throughout task execution, the Orchestrator directs other specialized agents to perform tasks as needed, such as operating a web browser, navigating local files, or writing and executing Python code. We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks: GAIA, AssistantBench, and WebArena. Magentic-One achieves these results without modification to core agent capabilities or to how they collaborate, demonstrating progress towards generalist agentic systems. Moreover, Magentic-One's modular design allows agents to be added or removed from the team without additional prompt tuning or training, easing development and making it extensible to future scenarios. We provide an open-source implementation of Magentic-One, and we include AutoGenBench, a standalone tool for agentic evaluation. AutoGenBench provides built-in controls for repetition and isolation to run agentic benchmarks in a rigorous and contained manner -- which is important when agents' actions have side-effects. Magentic-One, AutoGenBench and detailed empirical performance evaluations of Magentic-One, including ablations and error analysis are available at https://aka.ms/magentic-one
TCAndon-Router: Adaptive Reasoning Router for Multi-Agent Collaboration
Multi-Agent Systems(MAS) have become a powerful paradigm for building high performance intelligent applications. Within these systems, the router responsible for determining which expert agents should handle a given query plays a crucial role in overall performance. Existing routing strategies generally fall into two categories: performance routing, which balances latency and cost across models of different sizes, and task routing, which assigns queries to domain-specific experts to improve accuracy. In real-world enterprise applications, task routing is more suitable; however, most existing approaches rely on static single-label decisions, which introduce two major limitations: (i) difficulty in seamlessly integrating new agents as business domains expand, and (ii) routing conflicts caused by overlapping agent capabilities, ultimately degrading accuracy and robustness.To address these challenges, we propose TCAndon-Router(TCAR): an adaptive reasoning router for multi-agent collaboration. Unlike traditional routers, TCAR supports dynamic agent onboarding and first generates a natural-language reasoning chain before predicting a set of candidate agents capable of handling the query. In addition, we design a collaborative execution pipeline in which selected agents independently produce responses, which are then aggregated and refined into a single high-quality response by a dedicated Refining Agent.Experiments on public datasets and real enterprise data demonstrate that TCAR significantly improves routing accuracy, reduces routing conflicts, and remains robust in ambiguous scenarios. We have released TCAR at https://huggingface.co/tencent/TCAndon-Router to support future research on explainable and collaborative multi-agent routing.
LIMI: Less is More for Agency
We define Agency as the emergent capacity of AI systems to function as autonomous agents actively discovering problems, formulating hypotheses, and executing solutions through self-directed engagement with environments and tools. This fundamental capability marks the dawn of the Age of AI Agency, driven by a critical industry shift: the urgent need for AI systems that don't just think, but work. While current AI excels at reasoning and generating responses, industries demand autonomous agents that can execute tasks, operate tools, and drive real-world outcomes. As agentic intelligence becomes the defining characteristic separating cognitive systems from productive workers, efficiently cultivating machine autonomy becomes paramount. Current approaches assume that more data yields better agency, following traditional scaling laws from language modeling. We fundamentally challenge this paradigm. LIMI (Less Is More for Intelligent Agency) demonstrates that agency follows radically different development principles. Through strategic focus on collaborative software development and scientific research workflows, we show that sophisticated agentic intelligence can emerge from minimal but strategically curated demonstrations of autonomous behavior. Using only 78 carefully designed training samples, LIMI achieves 73.5% on comprehensive agency benchmarks, dramatically outperforming state-of-the-art models: Kimi-K2-Instruct (24.1%), DeepSeek-V3.1 (11.9%), Qwen3-235B-A22B-Instruct (27.5%), and GLM-4.5 (45.1%). Most strikingly, LIMI demonstrates 53.7% improvement over models trained on 10,000 samples-achieving superior agentic intelligence with 128 times fewer samples. Our findings establish the Agency Efficiency Principle: machine autonomy emerges not from data abundance but from strategic curation of high-quality agentic demonstrations.
AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenge
This study critically distinguishes between AI Agents and Agentic AI, offering a structured conceptual taxonomy, application mapping, and challenge analysis to clarify their divergent design philosophies and capabilities. We begin by outlining the search strategy and foundational definitions, characterizing AI Agents as modular systems driven by Large Language Models (LLMs) and Large Image Models (LIMs) for narrow, task-specific automation. Generative AI is positioned as a precursor, with AI Agents advancing through tool integration, prompt engineering, and reasoning enhancements. In contrast, Agentic AI systems represent a paradigmatic shift marked by multi-agent collaboration, dynamic task decomposition, persistent memory, and orchestrated autonomy. Through a sequential evaluation of architectural evolution, operational mechanisms, interaction styles, and autonomy levels, we present a comparative analysis across both paradigms. Application domains such as customer support, scheduling, and data summarization are contrasted with Agentic AI deployments in research automation, robotic coordination, and medical decision support. We further examine unique challenges in each paradigm including hallucination, brittleness, emergent behavior, and coordination failure and propose targeted solutions such as ReAct loops, RAG, orchestration layers, and causal modeling. This work aims to provide a definitive roadmap for developing robust, scalable, and explainable AI agent and Agentic AI-driven systems. >AI Agents, Agent-driven, Vision-Language-Models, Agentic AI Decision Support System, Agentic-AI Applications
Chain-of-Agents: End-to-End Agent Foundation Models via Multi-Agent Distillation and Agentic RL
Recent advances in large language models (LLMs) and multi-agent systems have demonstrated remarkable capabilities in complex problem-solving tasks such as deep research, vibe coding, and mathematical reasoning. However, most existing multi-agent systems are built upon manual prompt/workflow engineering with sophisticated agent frameworks, making them computationally inefficient, less capable, and can not benefit from data-centric learning. In this work, we introduce Chain-of-Agents (CoA), a novel paradigm of LLM reasoning that enables native end-to-end complex problem-solving in the same way as a multi-agent system (i.e., multi-turn problem solving with multiple tools and multiple agents) within one model. In chain-of-agents problem-solving, the model dynamically activates different tool agents and role-playing agents to simulate multi-agent collaboration in an end-to-end fashion. To elicit end-to-end chain-of-agents problem-solving abilities in LLMs, we introduce a multi-agent distillation framework to distill state-of-the-art multi-agent systems into chain-of-agents trajectories for agentic supervised fine-tuning. We then use agentic reinforcement learning on verifiable agentic tasks to further improve the models' capabilities on chain-of-agents problem solving. We call the resulting models Agent Foundation Models (AFMs). Our empirical studies demonstrate that AFM establishes new state-of-the-art performance across diverse benchmarks in both web agent and code agent settings. We make the entire research, including the model weights, code for training and evaluation, and the training data, fully open-sourced, which offers a solid starting point for future research on agent models and agentic RL.
A Survey of AI Agent Protocols
The rapid development of large language models (LLMs) has led to the widespread deployment of LLM agents across diverse industries, including customer service, content generation, data analysis, and even healthcare. However, as more LLM agents are deployed, a major issue has emerged: there is no standard way for these agents to communicate with external tools or data sources. This lack of standardized protocols makes it difficult for agents to work together or scale effectively, and it limits their ability to tackle complex, real-world tasks. A unified communication protocol for LLM agents could change this. It would allow agents and tools to interact more smoothly, encourage collaboration, and triggering the formation of collective intelligence. In this paper, we provide the first comprehensive analysis of existing agent protocols, proposing a systematic two-dimensional classification that differentiates context-oriented versus inter-agent protocols and general-purpose versus domain-specific protocols. Additionally, we conduct a comparative performance analysis of these protocols across key dimensions such as security, scalability, and latency. Finally, we explore the future landscape of agent protocols by identifying critical research directions and characteristics necessary for next-generation protocols. These characteristics include adaptability, privacy preservation, and group-based interaction, as well as trends toward layered architectures and collective intelligence infrastructures. We expect this work to serve as a practical reference for both researchers and engineers seeking to design, evaluate, or integrate robust communication infrastructures for intelligent agents.
FDABench: A Benchmark for Data Agents on Analytical Queries over Heterogeneous Data
The growing demand for data-driven decision-making has created an urgent need for data agents that can integrate structured and unstructured data for analysis. While data agents show promise for enabling users to perform complex analytics tasks, this field still suffers from three critical limitations: first, comprehensive data agent benchmarks remain absent due to the difficulty of designing test cases that evaluate agents' abilities across multi-source analytical tasks; second, constructing reliable test cases that combine structured and unstructured data remains costly and prohibitively complex; third, existing benchmarks exhibit limited adaptability and generalizability, resulting in narrow evaluation scope. To address these challenges, we present FDABench, the first data agent benchmark specifically designed for evaluating agents in multi-source data analytical scenarios. Our contributions include: (i) we construct a standardized benchmark with 2,007 diverse tasks across different data sources, domains, difficulty levels, and task types to comprehensively evaluate data agent performance; (ii) we design an agent-expert collaboration framework ensuring reliable and efficient benchmark construction over heterogeneous data; (iii) we equip FDABench with robust generalization capabilities across diverse target systems and frameworks. We use FDABench to evaluate various data agent systems, revealing that each system exhibits distinct advantages and limitations regarding response quality, accuracy, latency, and token cost.
Towards Enterprise-Ready Computer Using Generalist Agent
This paper presents our ongoing work toward developing an enterprise-ready Computer Using Generalist Agent (CUGA) system. Our research highlights the evolutionary nature of building agentic systems suitable for enterprise environments. By integrating state-of-the-art agentic AI techniques with a systematic approach to iterative evaluation, analysis, and refinement, we have achieved rapid and cost-effective performance gains, notably reaching a new state-of-the-art performance on the WebArena benchmark. We detail our development roadmap, the methodology and tools that facilitated rapid learning from failures and continuous system refinement, and discuss key lessons learned and future challenges for enterprise adoption.
S-Agents: self-organizing agents in open-ended environment
Leveraging large language models (LLMs), autonomous agents have significantly improved, gaining the ability to handle a variety of tasks. In open-ended settings, optimizing collaboration for efficiency and effectiveness demands flexible adjustments. Despite this, current research mainly emphasizes fixed, task-oriented workflows and overlooks agent-centric organizational structures. Drawing inspiration from human organizational behavior, we introduce a self-organizing agent system (S-Agents) with a "tree of agents" structure for dynamic workflow, an "hourglass agent architecture" for balancing information priorities, and a "non-obstructive collaboration" method to allow asynchronous task execution among agents. This structure can autonomously coordinate a group of agents, efficiently addressing the challenges of an open and dynamic environment without human intervention. Our experiments demonstrate that S-Agents proficiently execute collaborative building tasks and resource collection in the Minecraft environment, validating their effectiveness.
AutoData: A Multi-Agent System for Open Web Data Collection
The exponential growth of data-driven systems and AI technologies has intensified the demand for high-quality web-sourced datasets. While existing datasets have proven valuable, conventional web data collection approaches face significant limitations in terms of human effort and scalability. Current data-collecting solutions fall into two categories: wrapper-based methods that struggle with adaptability and reproducibility, and large language model (LLM)-based approaches that incur substantial computational and financial costs. To address these challenges, we propose AutoData, a novel multi-agent system for Automated web Data collection, that requires minimal human intervention, i.e., only necessitating a natural language instruction specifying the desired dataset. In addition, AutoData is designed with a robust multi-agent architecture, featuring a novel oriented message hypergraph coordinated by a central task manager, to efficiently organize agents across research and development squads. Besides, we introduce a novel hypergraph cache system to advance the multi-agent collaboration process that enables efficient automated data collection and mitigates the token cost issues prevalent in existing LLM-based systems. Moreover, we introduce Instruct2DS, a new benchmark dataset supporting live data collection from web sources across three domains: academic, finance, and sports. Comprehensive evaluations over Instruct2DS and three existing benchmark datasets demonstrate AutoData's superior performance compared to baseline methods. Case studies on challenging tasks such as picture book collection and paper extraction from surveys further validate its applicability. Our source code and dataset are available at https://github.com/GraphResearcher/AutoData.
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
The era of intelligent agents is upon us, driven by revolutionary advancements in large language models. Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence. This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy, linking architectural foundations, collaboration mechanisms, and evolutionary pathways. We unify fragmented research threads by revealing fundamental connections between agent design principles and their emergent behaviors in complex environments. Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time, while also addressing evaluation methodologies, tool applications, practical challenges, and diverse application domains. By surveying the latest developments in this rapidly evolving field, we offer researchers a structured taxonomy for understanding LLM agents and identify promising directions for future research. The collection is available at https://github.com/luo-junyu/Awesome-Agent-Papers.
Flash-Searcher: Fast and Effective Web Agents via DAG-Based Parallel Execution
Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks when equipped with external tools. However, current frameworks predominantly rely on sequential processing, leading to inefficient execution particularly for tasks requiring extensive tool interaction. This paper introduces Flash-Searcher, a novel parallel agent reasoning framework that fundamentally reimagines the execution paradigm from sequential chains to directed acyclic graphs (DAGs). Flash-Searcher decomposes complex tasks into subtasks with explicit dependencies, enabling concurrent execution of independent reasoning paths while maintaining logical constraints. Through dynamic workflow optimization, our framework continuously refines the execution graph based on intermediate results, effectively integrating summary module. Comprehensive evaluations across multiple benchmarks demonstrate that Flash-Searcher consistently outperforms existing approaches. Specifically, it achieves 67.7% accuracy on BrowseComp and 83% on xbench-DeepSearch, while reducing agent execution steps by up to 35% compared to current frameworks. Furthermore, when distilling this parallel reasoning pipeline into single models, we observe substantial performance gains across diverse backbone architectures, underscoring the generalizability of our methodology. Our work thus represents a significant advance in agent architecture design, offering a more scalable and efficient paradigm for complex reasoning tasks.
MegaFlow: Large-Scale Distributed Orchestration System for the Agentic Era
The rapid development of interactive and autonomous AI systems signals our entry into the agentic era. Training and evaluating agents on complex agentic tasks such as software engineering and computer use requires not only efficient model computation but also sophisticated infrastructure capable of coordinating vast agent-environment interactions. However, no open-source infrastructure can effectively support large-scale training and evaluation on such complex agentic tasks. To address this challenge, we present MegaFlow, a large-scale distributed orchestration system that enables efficient scheduling, resource allocation, and fine-grained task management for agent-environment workloads. MegaFlow abstracts agent training infrastructure into three independent services (Model Service, Agent Service, and Environment Service) that interact through unified interfaces, enabling independent scaling and flexible resource allocation across diverse agent-environment configurations. In our agent training deployments, MegaFlow successfully orchestrates tens of thousands of concurrent agent tasks while maintaining high system stability and achieving efficient resource utilization. By enabling such large-scale agent training, MegaFlow addresses a critical infrastructure gap in the emerging agentic AI landscape.
LLM as OS, Agents as Apps: Envisioning AIOS, Agents and the AIOS-Agent Ecosystem
This paper envisions a revolutionary AIOS-Agent ecosystem, where Large Language Model (LLM) serves as the (Artificial) Intelligent Operating System (IOS, or AIOS)--an operating system "with soul". Upon this foundation, a diverse range of LLM-based AI Agent Applications (Agents, or AAPs) are developed, enriching the AIOS-Agent ecosystem and signaling a paradigm shift from the traditional OS-APP ecosystem. We envision that LLM's impact will not be limited to the AI application level, instead, it will in turn revolutionize the design and implementation of computer system, architecture, software, and programming language, featured by several main concepts: LLM as OS (system-level), Agents as Applications (application-level), Natural Language as Programming Interface (user-level), and Tools as Devices/Libraries (hardware/middleware-level). We begin by introducing the architecture of traditional OS. Then we formalize a conceptual framework for AIOS through "LLM as OS (LLMOS)", drawing analogies between AIOS and traditional OS: LLM is likened to OS kernel, context window to memory, external storage to file system, hardware tools to peripheral devices, software tools to programming libraries, and user prompts to user commands. Subsequently, we introduce the new AIOS-Agent Ecosystem, where users can easily program Agent Applications (AAPs) using natural language, democratizing the development of software, which is different from the traditional OS-APP ecosystem. Following this, we explore the diverse scope of Agent Applications. We delve into both single-agent and multi-agent systems, as well as human-agent interaction. Lastly, drawing on the insights from traditional OS-APP ecosystem, we propose a roadmap for the evolution of the AIOS-Agent ecosystem. This roadmap is designed to guide the future research and development, suggesting systematic progresses of AIOS and its Agent applications.
Aime: Towards Fully-Autonomous Multi-Agent Framework
Multi-Agent Systems (MAS) powered by Large Language Models (LLMs) are emerging as a powerful paradigm for solving complex, multifaceted problems. However, the potential of these systems is often constrained by the prevalent plan-and-execute framework, which suffers from critical limitations: rigid plan execution, static agent capabilities, and inefficient communication. These weaknesses hinder their adaptability and robustness in dynamic environments. This paper introduces Aime, a novel multi-agent framework designed to overcome these challenges through dynamic, reactive planning and execution. Aime replaces the conventional static workflow with a fluid and adaptive architecture. Its core innovations include: (1) a Dynamic Planner that continuously refines the overall strategy based on real-time execution feedback; (2) an Actor Factory that implements Dynamic Actor instantiation, assembling specialized agents on-demand with tailored tools and knowledge; and (3) a centralized Progress Management Module that serves as a single source of truth for coherent, system-wide state awareness. We empirically evaluated Aime on a diverse suite of benchmarks spanning general reasoning (GAIA), software engineering (SWE-bench Verified), and live web navigation (WebVoyager). The results demonstrate that Aime consistently outperforms even highly specialized state-of-the-art agents in their respective domains. Its superior adaptability and task success rate establish Aime as a more resilient and effective foundation for multi-agent collaboration.
Accelerating Earth Science Discovery via Multi-Agent LLM Systems
This Perspective explores the transformative potential of Multi-Agent Systems (MAS) powered by Large Language Models (LLMs) in the geosciences. Users of geoscientific data repositories face challenges due to the complexity and diversity of data formats, inconsistent metadata practices, and a considerable number of unprocessed datasets. MAS possesses transformative potential for improving scientists' interaction with geoscientific data by enabling intelligent data processing, natural language interfaces, and collaborative problem-solving capabilities. We illustrate this approach with "PANGAEA GPT", a specialized MAS pipeline integrated with the diverse PANGAEA database for Earth and Environmental Science, demonstrating how MAS-driven workflows can effectively manage complex datasets and accelerate scientific discovery. We discuss how MAS can address current data challenges in geosciences, highlight advancements in other scientific fields, and propose future directions for integrating MAS into geoscientific data processing pipelines. In this Perspective, we show how MAS can fundamentally improve data accessibility, promote cross-disciplinary collaboration, and accelerate geoscientific discoveries.
AI Agent Systems: Architectures, Applications, and Evaluation
AI agents -- systems that combine foundation models with reasoning, planning, memory, and tool use -- are rapidly becoming a practical interface between natural-language intent and real-world computation. This survey synthesizes the emerging landscape of AI agent architectures across: (i) deliberation and reasoning (e.g., chain-of-thought-style decomposition, self-reflection and verification, and constraint-aware decision making), (ii) planning and control (from reactive policies to hierarchical and multi-step planners), and (iii) tool calling and environment interaction (retrieval, code execution, APIs, and multimodal perception). We organize prior work into a unified taxonomy spanning agent components (policy/LLM core, memory, world models, planners, tool routers, and critics), orchestration patterns (single-agent vs.\ multi-agent; centralized vs.\ decentralized coordination), and deployment settings (offline analysis vs.\ online interactive assistance; safety-critical vs.\ open-ended tasks). We discuss key design trade-offs -- latency vs.\ accuracy, autonomy vs.\ controllability, and capability vs.\ reliability -- and highlight how evaluation is complicated by non-determinism, long-horizon credit assignment, tool and environment variability, and hidden costs such as retries and context growth. Finally, we summarize measurement and benchmarking practices (task suites, human preference and utility metrics, success under constraints, robustness and security) and identify open challenges including verification and guardrails for tool actions, scalable memory and context management, interpretability of agent decisions, and reproducible evaluation under realistic workloads.
Large Language Models Orchestrating Structured Reasoning Achieve Kaggle Grandmaster Level
We introduce Agent K v1.0, an end-to-end autonomous data science agent designed to automate, optimise, and generalise across diverse data science tasks. Fully automated, Agent K v1.0 manages the entire data science life cycle by learning from experience. It leverages a highly flexible structured reasoning framework to enable it to dynamically process memory in a nested structure, effectively learning from accumulated experience stored to handle complex reasoning tasks. It optimises long- and short-term memory by selectively storing and retrieving key information, guiding future decisions based on environmental rewards. This iterative approach allows it to refine decisions without fine-tuning or backpropagation, achieving continuous improvement through experiential learning. We evaluate our agent's apabilities using Kaggle competitions as a case study. Following a fully automated protocol, Agent K v1.0 systematically addresses complex and multimodal data science tasks, employing Bayesian optimisation for hyperparameter tuning and feature engineering. Our new evaluation framework rigorously assesses Agent K v1.0's end-to-end capabilities to generate and send submissions starting from a Kaggle competition URL. Results demonstrate that Agent K v1.0 achieves a 92.5\% success rate across tasks, spanning tabular, computer vision, NLP, and multimodal domains. When benchmarking against 5,856 human Kaggle competitors by calculating Elo-MMR scores for each, Agent K v1.0 ranks in the top 38\%, demonstrating an overall skill level comparable to Expert-level users. Notably, its Elo-MMR score falls between the first and third quartiles of scores achieved by human Grandmasters. Furthermore, our results indicate that Agent K v1.0 has reached a performance level equivalent to Kaggle Grandmaster, with a record of 6 gold, 3 silver, and 7 bronze medals, as defined by Kaggle's progression system.
Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence
The rapid advancement of large language models (LLMs) has paved the way for the development of highly capable autonomous agents. However, existing multi-agent frameworks often struggle with integrating diverse capable third-party agents due to reliance on agents defined within their own ecosystems. They also face challenges in simulating distributed environments, as most frameworks are limited to single-device setups. Furthermore, these frameworks often rely on hard-coded communication pipelines, limiting their adaptability to dynamic task requirements. Inspired by the concept of the Internet, we propose the Internet of Agents (IoA), a novel framework that addresses these limitations by providing a flexible and scalable platform for LLM-based multi-agent collaboration. IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control. Through extensive experiments on general assistant tasks, embodied AI tasks, and retrieval-augmented generation benchmarks, we demonstrate that IoA consistently outperforms state-of-the-art baselines, showcasing its ability to facilitate effective collaboration among heterogeneous agents. IoA represents a step towards linking diverse agents in an Internet-like environment, where agents can seamlessly collaborate to achieve greater intelligence and capabilities. Our codebase has been released at https://github.com/OpenBMB/IoA.
Glia: A Human-Inspired AI for Automated Systems Design and Optimization
Can an AI autonomously design mechanisms for computer systems on par with the creativity and reasoning of human experts? We present Glia, an AI architecture for networked systems design that uses large language models (LLMs) in a human-inspired, multi-agent workflow. Each agent specializes in reasoning, experimentation, and analysis, collaborating through an evaluation framework that grounds abstract reasoning in empirical feedback. Unlike prior ML-for-systems methods that optimize black-box policies, Glia generates interpretable designs and exposes its reasoning process. When applied to a distributed GPU cluster for LLM inference, it produces new algorithms for request routing, scheduling, and auto-scaling that perform at human-expert levels in significantly less time, while yielding novel insights into workload behavior. Our results suggest that by combining reasoning LLMs with structured experimentation, an AI can produce creative and understandable designs for complex systems problems.
Communication Learning in Multi-Agent Systems from Graph Modeling Perspective
In numerous artificial intelligence applications, the collaborative efforts of multiple intelligent agents are imperative for the successful attainment of target objectives. To enhance coordination among these agents, a distributed communication framework is often employed. However, indiscriminate information sharing among all agents can be resource-intensive, and the adoption of manually pre-defined communication architectures imposes constraints on inter-agent communication, thus limiting the potential for effective collaboration. Moreover, the communication framework often remains static during inference, which may result in sustained high resource consumption, as in most cases, only key decisions necessitate information sharing among agents. In this study, we introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph. We formulate this problem as the task of determining the communication graph while enabling the architecture parameters to update normally, thus necessitating a bi-level optimization process. Utilizing continuous relaxation of the graph representation and incorporating attention units, our proposed approach, CommFormer, efficiently optimizes the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner. Additionally, we introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time, based on current observations, thus improving decision-making efficiency. Extensive experiments on a variety of cooperative tasks substantiate the robustness of our model across diverse cooperative scenarios, where agents are able to develop more coordinated and sophisticated strategies regardless of changes in the number of agents.
G-Memory: Tracing Hierarchical Memory for Multi-Agent Systems
Large language model (LLM)-powered multi-agent systems (MAS) have demonstrated cognitive and execution capabilities that far exceed those of single LLM agents, yet their capacity for self-evolution remains hampered by underdeveloped memory architectures. Upon close inspection, we are alarmed to discover that prevailing MAS memory mechanisms (1) are overly simplistic, completely disregarding the nuanced inter-agent collaboration trajectories, and (2) lack cross-trial and agent-specific customization, in stark contrast to the expressive memory developed for single agents. To bridge this gap, we introduce G-Memory, a hierarchical, agentic memory system for MAS inspired by organizational memory theory, which manages the lengthy MAS interaction via a three-tier graph hierarchy: insight, query, and interaction graphs. Upon receiving a new user query, G-Memory performs bi-directional memory traversal to retrieve both high-level, generalizable insights that enable the system to leverage cross-trial knowledge, and fine-grained, condensed interaction trajectories that compactly encode prior collaboration experiences. Upon task execution, the entire hierarchy evolves by assimilating new collaborative trajectories, nurturing the progressive evolution of agent teams. Extensive experiments across five benchmarks, three LLM backbones, and three popular MAS frameworks demonstrate that G-Memory improves success rates in embodied action and accuracy in knowledge QA by up to 20.89% and 10.12%, respectively, without any modifications to the original frameworks. Our codes are available at https://github.com/bingreeky/GMemory.
Automated Design of Agentic Systems
Researchers are investing substantial effort in developing powerful general-purpose agents, wherein Foundation Models are used as modules within agentic systems (e.g. Chain-of-Thought, Self-Reflection, Toolformer). However, the history of machine learning teaches us that hand-designed solutions are eventually replaced by learned solutions. We formulate a new research area, Automated Design of Agentic Systems (ADAS), which aims to automatically create powerful agentic system designs, including inventing novel building blocks and/or combining them in new ways. We further demonstrate that there is an unexplored yet promising approach within ADAS where agents can be defined in code and new agents can be automatically discovered by a meta agent programming ever better ones in code. Given that programming languages are Turing Complete, this approach theoretically enables the learning of any possible agentic system: including novel prompts, tool use, control flows, and combinations thereof. We present a simple yet effective algorithm named Meta Agent Search to demonstrate this idea, where a meta agent iteratively programs interesting new agents based on an ever-growing archive of previous discoveries. Through extensive experiments across multiple domains including coding, science, and math, we show that our algorithm can progressively invent agents with novel designs that greatly outperform state-of-the-art hand-designed agents. Importantly, we consistently observe the surprising result that agents invented by Meta Agent Search maintain superior performance even when transferred across domains and models, demonstrating their robustness and generality. Provided we develop it safely, our work illustrates the potential of an exciting new research direction toward automatically designing ever-more powerful agentic systems to benefit humanity.
Episodic Memory in Agentic Frameworks: Suggesting Next Tasks
Agentic frameworks powered by Large Language Models (LLMs) can be useful tools in scientific workflows by enabling human-AI co-creation. A key challenge is recommending the next steps during workflow creation without relying solely on LLMs, which risk hallucination and require fine-tuning with scarce proprietary data. We propose an episodic memory architecture that stores and retrieves past workflows to guide agents in suggesting plausible next tasks. By matching current workflows with historical sequences, agents can recommend steps based on prior patterns.
Nalar: An agent serving framework
LLM-driven agentic applications increasingly automate complex, multi-step tasks, but serving them efficiently remains challenging due to heterogeneous components, dynamic and model-driven control flow, long-running state, and unpredictable latencies. Nalar is a ground-up agent-serving framework that cleanly separates workflow specification from execution while providing the runtime visibility and control needed for robust performance. Nalar preserves full Python expressiveness, using lightweight auto-generated stubs that turn agent and tool invocations into futures carrying dependency and context metadata. A managed state layer decouples logical state from physical placement, enabling safe reuse, migration, and consistent retry behavior. A two-level control architecture combines global policy computation with local event-driven enforcement to support adaptive routing, scheduling, and resource management across evolving workflows. Together, these mechanisms allow Nalar to deliver scalable, efficient, and policy-driven serving of heterogeneous agentic applications without burdening developers with orchestration logic. Across three agentic workloads, Nalar cuts tail latency by 34--74\%, achieves up to 2.9times speedups, sustains 80 RPS where baselines fail, and scales to 130K futures with sub-500 ms control overhead.
Multi-Agent Design: Optimizing Agents with Better Prompts and Topologies
Large language models, employed as multiple agents that interact and collaborate with each other, have excelled at solving complex tasks. The agents are programmed with prompts that declare their functionality, along with the topologies that orchestrate interactions across agents. Designing prompts and topologies for multi-agent systems (MAS) is inherently complex. To automate the entire design process, we first conduct an in-depth analysis of the design space aiming to understand the factors behind building effective MAS. We reveal that prompts together with topologies play critical roles in enabling more effective MAS design. Based on the insights, we propose Multi-Agent System Search (MASS), a MAS optimization framework that efficiently exploits the complex MAS design space by interleaving its optimization stages, from local to global, from prompts to topologies, over three stages: 1) block-level (local) prompt optimization; 2) workflow topology optimization; 3) workflow-level (global) prompt optimization, where each stage is conditioned on the iteratively optimized prompts/topologies from former stages. We show that MASS-optimized multi-agent systems outperform a spectrum of existing alternatives by a substantial margin. Based on the MASS-found systems, we finally propose design principles behind building effective multi-agent systems.
MAS-Orchestra: Understanding and Improving Multi-Agent Reasoning Through Holistic Orchestration and Controlled Benchmarks
While multi-agent systems (MAS) promise elevated intelligence through coordination of agents, current approaches to automatic MAS design under-deliver. Such shortcomings stem from two key factors: (1) methodological complexity - agent orchestration is performed using sequential, code-level execution that limits global system-level holistic reasoning and scales poorly with agent complexity - and (2) efficacy uncertainty - MAS are deployed without understanding if there are tangible benefits compared to single-agent systems (SAS). We propose MAS-Orchestra, a training-time framework that formulates MAS orchestration as a function-calling reinforcement learning problem with holistic orchestration, generating an entire MAS at once. In MAS-Orchestra, complex, goal-oriented sub-agents are abstracted as callable functions, enabling global reasoning over system structure while hiding internal execution details. To rigorously study when and why MAS are beneficial, we introduce MASBENCH, a controlled benchmark that characterizes tasks along five axes: Depth, Horizon, Breadth, Parallel, and Robustness. Our analysis reveals that MAS gains depend critically on task structure, verification protocols, and the capabilities of both orchestrator and sub-agents, rather than holding universally. Guided by these insights, MAS-Orchestra achieves consistent improvements on public benchmarks including mathematical reasoning, multi-hop QA, and search-based QA. Together, MAS-Orchestra and MASBENCH enable better training and understanding of MAS in the pursuit of multi-agent intelligence.
If You Want Coherence, Orchestrate a Team of Rivals: Multi-Agent Models of Organizational Intelligence
AI Agents can perform complex operations at great speed, but just like all the humans we have ever hired, their intelligence remains fallible. Miscommunications aren't noticed, systemic biases have no counter-action, and inner monologues are rarely written down. We did not come to fire them for their mistakes, but to hire them and provide a safe productive working environment. We posit that we can reuse a common corporate organizational structure: teams of independent AI agents with strict role boundaries can work with common goals, but opposing incentives. Multiple models serving as a team of rivals can catch and minimize errors within the final product at a small cost to the velocity of actions. In this paper we demonstrate that we can achieve reliability without acquiring perfect components, but through careful orchestration of imperfect ones. This paper describes the architecture of such a system in practice: specialized agent teams (planners, executors, critics, experts), organized into an organization with clear goals, coordinated through a remote code executor that keeps data transformations and tool invocations separate from reasoning models. Rather than agents directly calling tools and ingesting full responses, they write code that executes remotely; only relevant summaries return to agent context. By preventing raw data and tool outputs from contaminating context windows, the system maintains clean separation between perception (brains that plan and reason) and execution (hands that perform heavy data transformations and API calls). We demonstrate the approach achieves over 90% internal error interception prior to user exposure while maintaining acceptable latency tradeoffs. A survey from our traces shows that we only trade off cost and latency to achieve correctness and incrementally expand capabilities without impacting existing ones.
MAS-ZERO: Designing Multi-Agent Systems with Zero Supervision
Multi-agent systems (MAS) leveraging the impressive capabilities of Large Language Models (LLMs) hold significant potential for tackling complex tasks. However, most current MAS depend on manually designed agent roles and communication protocols. These manual designs often fail to align with the underlying LLMs' strengths and struggle to adapt to novel tasks. Recent automatic MAS approaches attempt to mitigate these limitations but typically necessitate a validation set for tuning and yield static MAS designs lacking adaptability during inference. We introduce MAS-ZERO, the first self-evolved, inference-time framework for automatic MAS design. MAS-ZERO employs meta-level design to iteratively generate, evaluate, and refine MAS configurations tailored to each problem instance, without requiring a validation set. Critically, it enables dynamic agent composition and problem decomposition through meta-feedback on solvability and completeness. Experiments across math, graduate-level QA, and software engineering benchmarks, using both closed-source and open-source LLM backbones of varying sizes, demonstrate that MAS-ZERO outperforms both manual and automatic MAS baselines, achieving a 7.44% average accuracy improvement over the next strongest baseline while maintaining cost-efficiency. These findings underscore the promise of meta-level self-evolved design for creating effective and adaptive MAS.
Towards a Science of Scaling Agent Systems
Agents, language model (LM)-based systems that are capable of reasoning, planning, and acting are becoming the dominant paradigm for real-world AI applications. Despite this widespread adoption, the principles that determine their performance remain underexplored, leaving practitioners to rely on heuristics rather than principled design choices. We address this gap by deriving quantitative scaling principles for agent systems. We evaluate this across four diverse benchmarks: Finance-Agent, BrowseComp-Plus, PlanCraft, and Workbench. Using five canonical architectures (Single, Independent, Centralized, Decentralized, Hybrid) instantiated across three LLM families, we perform a controlled evaluation spanning 180 configurations with standardized tools and token budgets. We derive a predictive model using empirical coordination metrics, including efficiency, overhead, error amplification, and redundancy, that achieves cross-validated R^2=0.513. We identify three dominant effects: (1) a tool-coordination trade-off: under fixed computational budgets, tool-heavy tasks suffer disproportionately from multi-agent overhead. (2) a capability saturation: coordination yields diminishing or negative returns (beta=-0.408, p<0.001) once single-agent baselines exceed ~45%. (3) topology-dependent error amplification: independent agents amplify errors 17.2x through unchecked propagation, while centralized coordination contains this to 4.4x. Centralized coordination improves performance by 80.9% on parallelizable tasks like financial reasoning, while decentralized coordination excels on dynamic web navigation (+9.2% vs. +0.2%). Yet for sequential reasoning tasks, all multi-agent variants degraded performance by 39-70%. The framework predicts the optimal coordination strategy for 87% of held-out configurations, providing a predictive principle of agentic scaling based on measurable task properties.
Autonomous Deep Agent
This technical brief introduces Deep Agent, an advanced autonomous AI system designed to manage complex multi-phase tasks through a novel hierarchical task management architecture. The system's foundation is built on our Hierarchical Task DAG (HTDAG) framework, which dynamically decomposes high-level objectives into manageable sub-tasks while rigorously maintaining dependencies and execution coherence. Deep Agent advances beyond traditional agent systems through three key innovations: First, it implements a recursive two-stage planner-executor architecture that enables continuous task refinement and adaptation as circumstances change. Second, it features an Autonomous API & Tool Creation (AATC) system that automatically generates reusable components from UI interactions, substantially reducing operational costs for similar tasks. Third, it incorporates Prompt Tweaking Engine and Autonomous Prompt Feedback Learning components that optimize Large Language Model prompts for specific scenarios, enhancing both inference accuracy and operational stability. These components are integrated to form a service infrastructure that manages user contexts, handles complex task dependencies, and orchestrates end-to-end agentic workflow execution. Through this sophisticated architecture, Deep Agent establishes a novel paradigm in self-governing AI systems, demonstrating robust capability to independently handle intricate, multi-step tasks while maintaining consistent efficiency and reliability through continuous self-optimization.
AWorld: Dynamic Multi-Agent System with Stable Maneuvering for Robust GAIA Problem Solving
The rapid advancement of large language models (LLMs) has empowered intelligent agents to leverage diverse external tools for solving complex real-world problems. However, as agents increasingly depend on multiple tools, they encounter new challenges: extended contexts from disparate sources and noisy or irrelevant tool outputs can undermine system reliability and accuracy. These challenges underscore the necessity for enhanced stability in agent-based systems. To address this, we introduce dynamic supervision and maneuvering mechanisms, constructing a robust and dynamic Multi-Agent System (MAS) architecture within the AWorld framework. In our approach, the Execution Agent invokes the Guard Agent at critical steps to verify and correct the reasoning process, effectively reducing errors arising from noise and bolstering problem-solving robustness. Extensive experiments on the GAIA test dataset reveal that our dynamic maneuvering mechanism significantly improves both the effectiveness and stability of solutions, outperforming single-agent system (SAS) and standard tool-augmented systems. As a result, our dynamic MAS system achieved first place among open-source projects on the prestigious GAIA leaderboard. These findings highlight the practical value of collaborative agent roles in developing more reliable and trustworthy intelligent systems.
MasHost Builds It All: Autonomous Multi-Agent System Directed by Reinforcement Learning
Large Language Model (LLM)-driven Multi-agent systems (Mas) have recently emerged as a powerful paradigm for tackling complex real-world tasks. However, existing Mas construction methods typically rely on manually crafted interaction mechanisms or heuristic rules, introducing human biases and constraining the autonomous ability. Even with recent advances in adaptive Mas construction, existing systems largely remain within the paradigm of semi-autonomous patterns. In this work, we propose MasHost, a Reinforcement Learning (RL)-based framework for autonomous and query-adaptive Mas design. By formulating Mas construction as a graph search problem, our proposed MasHost jointly samples agent roles and their interactions through a unified probabilistic sampling mechanism. Beyond the accuracy and efficiency objectives pursued in prior works, we introduce component rationality as an additional and novel design principle in Mas. To achieve this multi-objective optimization, we propose Hierarchical Relative Policy Optimization (HRPO), a novel RL strategy that collaboratively integrates group-relative advantages and action-wise rewards. To our knowledge, our proposed MasHost is the first RL-driven framework for autonomous Mas graph construction. Extensive experiments on six benchmarks demonstrate that MasHost consistently outperforms most competitive baselines, validating its effectiveness, efficiency, and structure rationality.
WebDancer: Towards Autonomous Information Seeking Agency
Addressing intricate real-world problems necessitates in-depth information seeking and multi-step reasoning. Recent progress in agentic systems, exemplified by Deep Research, underscores the potential for autonomous multi-step research. In this work, we present a cohesive paradigm for building end-to-end agentic information seeking agents from a data-centric and training-stage perspective. Our approach consists of four key stages: (1) browsing data construction, (2) trajectories sampling, (3) supervised fine-tuning for effective cold start, and (4) reinforcement learning for enhanced generalisation. We instantiate this framework in a web agent based on the ReAct, WebDancer. Empirical evaluations on the challenging information seeking benchmarks, GAIA and WebWalkerQA, demonstrate the strong performance of WebDancer, achieving considerable results and highlighting the efficacy of our training paradigm. Further analysis of agent training provides valuable insights and actionable, systematic pathways for developing more capable agentic models. The codes and demo will be released in https://github.com/Alibaba-NLP/WebAgent.
Multi-Agent Reinforcement Learning for Microprocessor Design Space Exploration
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency. As the systems grow in complexity, fine-tuning architectural parameters across multiple sub-systems (e.g., datapath, memory blocks in different hierarchies, interconnects, compiler optimization, etc.) quickly results in a combinatorial explosion of design space. This makes domain-specific customization an extremely challenging task. Prior work explores using reinforcement learning (RL) and other optimization methods to automatically explore the large design space. However, these methods have traditionally relied on single-agent RL/ML formulations. It is unclear how scalable single-agent formulations are as we increase the complexity of the design space (e.g., full stack System-on-Chip design). Therefore, we propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem. The key idea behind using MARL is an observation that parameters across different sub-systems are more or less independent, thus allowing a decentralized role assigned to each agent. We test this hypothesis by designing domain-specific DRAM memory controller for several workload traces. Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines such as Proximal Policy Optimization and Soft Actor-Critic over different target objectives such as low power and latency. To this end, this work opens the pathway for new and promising research in MARL solutions for hardware architecture search.
Graph Neural Networks Gone Hogwild
Message passing graph neural networks (GNNs) would appear to be powerful tools to learn distributed algorithms via gradient descent, but generate catastrophically incorrect predictions when nodes update asynchronously during inference. This failure under asynchrony effectively excludes these architectures from many potential applications, such as learning local communication policies between resource-constrained agents in, e.g., robotic swarms or sensor networks. In this work we explore why this failure occurs in common GNN architectures, and identify "implicitly-defined" GNNs as a class of architectures which is provably robust to partially asynchronous "hogwild" inference, adapting convergence guarantees from work in asynchronous and distributed optimization, e.g., Bertsekas (1982); Niu et al. (2011). We then propose a novel implicitly-defined GNN architecture, which we call an energy GNN. We show that this architecture outperforms other GNNs from this class on a variety of synthetic tasks inspired by multi-agent systems, and achieves competitive performance on real-world datasets.
A Comprehensive Survey of Self-Evolving AI Agents: A New Paradigm Bridging Foundation Models and Lifelong Agentic Systems
Recent advances in large language models have sparked growing interest in AI agents capable of solving complex, real-world tasks. However, most existing agent systems rely on manually crafted configurations that remain static after deployment, limiting their ability to adapt to dynamic and evolving environments. To this end, recent research has explored agent evolution techniques that aim to automatically enhance agent systems based on interaction data and environmental feedback. This emerging direction lays the foundation for self-evolving AI agents, which bridge the static capabilities of foundation models with the continuous adaptability required by lifelong agentic systems. In this survey, we provide a comprehensive review of existing techniques for self-evolving agentic systems. Specifically, we first introduce a unified conceptual framework that abstracts the feedback loop underlying the design of self-evolving agentic systems. The framework highlights four key components: System Inputs, Agent System, Environment, and Optimisers, serving as a foundation for understanding and comparing different strategies. Based on this framework, we systematically review a wide range of self-evolving techniques that target different components of the agent system. We also investigate domain-specific evolution strategies developed for specialised fields such as biomedicine, programming, and finance, where optimisation objectives are tightly coupled with domain constraints. In addition, we provide a dedicated discussion on the evaluation, safety, and ethical considerations for self-evolving agentic systems, which are critical to ensuring their effectiveness and reliability. This survey aims to provide researchers and practitioners with a systematic understanding of self-evolving AI agents, laying the foundation for the development of more adaptive, autonomous, and lifelong agentic systems.
Towards Responsible Generative AI: A Reference Architecture for Designing Foundation Model based Agents
Foundation models, such as large language models (LLMs), have been widely recognised as transformative AI technologies due to their capabilities to understand and generate content, including plans with reasoning capabilities. Foundation model based agents derive their autonomy from the capabilities of foundation models, which enable them to autonomously break down a given goal into a set of manageable tasks and orchestrate task execution to meet the goal. Despite the huge efforts put into building foundation model based agents, the architecture design of the agents has not yet been systematically explored. Also, while there are significant benefits of using agents for planning and execution, there are serious considerations regarding responsible AI related software quality attributes, such as security and accountability. Therefore, this paper presents a pattern-oriented reference architecture that serves as guidance when designing foundation model based agents. We evaluate the completeness and utility of the proposed reference architecture by mapping it to the architecture of two real-world agents.
Adaptive Cybersecurity Architecture for Digital Product Ecosystems Using Agentic AI
Traditional static cybersecurity models often struggle with scalability, real-time detection, and contextual responsiveness in the current digital product ecosystems which include cloud services, application programming interfaces (APIs), mobile platforms, and edge devices. This study introduces autonomous goal driven agents capable of dynamic learning and context-aware decision making as part of an adaptive cybersecurity architecture driven by agentic artificial intelligence (AI). To facilitate autonomous threat mitigation, proactive policy enforcement, and real-time anomaly detection, this framework integrates agentic AI across the key ecosystem layers. Behavioral baselining, decentralized risk scoring, and federated threat intelligence sharing are important features. The capacity of the system to identify zero-day attacks and dynamically modify access policies was demonstrated through native cloud simulations. The evaluation results show increased adaptability, decreased response latency, and improved detection accuracy. The architecture provides an intelligent and scalable blueprint for safeguarding complex digital infrastructure and is compatible with zero-trust models, thereby supporting the adherence to international cybersecurity regulations.
ARE: Scaling Up Agent Environments and Evaluations
We introduce Meta Agents Research Environments (ARE), a research platform for scalable creation of environments, integration of synthetic or real applications, and execution of agentic orchestrations. ARE provides simple abstractions to build complex and diverse environments, each with their own rules, tools, content, and verifiers, helping to bridge the gap between model development and real-world deployment. We also propose Gaia2, a benchmark built in ARE and designed to measure general agent capabilities. Beyond search and execution, Gaia2 requires agents to handle ambiguities and noise, adapt to dynamic environments, collaborate with other agents, and operate under temporal constraints. Unlike prior benchmarks, Gaia2 runs asynchronously, surfacing new failure modes that are invisible in static settings. Our experiments show that no system dominates across the intelligence spectrum: stronger reasoning often comes at the cost of efficiency, and budget scaling curves plateau, highlighting the need for new architectures and adaptive compute strategies. Perhaps more importantly, ARE abstractions enable continuous extension of Gaia2 to other environments, empowering the community to rapidly create new benchmarks tailored to their domains. In AI's second half, progress increasingly depends on defining meaningful tasks and robust evaluations to drive frontier capabilities forward.
AgentScope 1.0: A Developer-Centric Framework for Building Agentic Applications
Driven by rapid advancements of Large Language Models (LLMs), agents are empowered to combine intrinsic knowledge with dynamic tool use, greatly enhancing their capacity to address real-world tasks. In line with such an evolution, AgentScope introduces major improvements in a new version (1.0), towards comprehensively supporting flexible and efficient tool-based agent-environment interactions for building agentic applications. Specifically, we abstract foundational components essential for agentic applications and provide unified interfaces and extensible modules, enabling developers to easily leverage the latest progress, such as new models and MCPs. Furthermore, we ground agent behaviors in the ReAct paradigm and offer advanced agent-level infrastructure based on a systematic asynchronous design, which enriches both human-agent and agent-agent interaction patterns while improving execution efficiency. Building on this foundation, we integrate several built-in agents tailored to specific practical scenarios. AgentScope also includes robust engineering support for developer-friendly experiences. We provide a scalable evaluation module with a visual studio interface, making the development of long-trajectory agentic applications more manageable and easier to trace. In addition, AgentScope offers a runtime sandbox to ensure safe agent execution and facilitates rapid deployment in production environments. With these enhancements, AgentScope provides a practical foundation for building scalable, adaptive, and effective agentic applications.
Build Your Personalized Research Group: A Multiagent Framework for Continual and Interactive Science Automation
The automation of scientific discovery represents a critical milestone in Artificial Intelligence (AI) research. However, existing agentic systems for science suffer from two fundamental limitations: rigid, pre-programmed workflows that cannot adapt to intermediate findings, and inadequate context management that hinders long-horizon research. We present freephdlabor, an open-source multiagent framework featuring fully dynamic workflows determined by real-time agent reasoning and a \textit{modular architecture} enabling seamless customization -- users can modify, add, or remove agents to address domain-specific requirements. The framework provides comprehensive infrastructure including automatic context compaction, workspace-based communication to prevent information degradation, memory persistence across sessions, and non-blocking human intervention mechanisms. These features collectively transform automated research from isolated, single-run attempts into continual research programs that build systematically on prior explorations and incorporate human feedback. By providing both the architectural principles and practical implementation for building customizable co-scientist systems, this work aims to facilitate broader adoption of automated research across scientific domains, enabling practitioners to deploy interactive multiagent systems that autonomously conduct end-to-end research -- from ideation through experimentation to publication-ready manuscripts.
Learning to Be A Doctor: Searching for Effective Medical Agent Architectures
Large Language Model (LLM)-based agents have demonstrated strong capabilities across a wide range of tasks, and their application in the medical domain holds particular promise due to the demand for high generalizability and reliance on interdisciplinary knowledge. However, existing medical agent systems often rely on static, manually crafted workflows that lack the flexibility to accommodate diverse diagnostic requirements and adapt to emerging clinical scenarios. Motivated by the success of automated machine learning (AutoML), this paper introduces a novel framework for the automated design of medical agent architectures. Specifically, we define a hierarchical and expressive agent search space that enables dynamic workflow adaptation through structured modifications at the node, structural, and framework levels. Our framework conceptualizes medical agents as graph-based architectures composed of diverse, functional node types and supports iterative self-improvement guided by diagnostic feedback. Experimental results on skin disease diagnosis tasks demonstrate that the proposed method effectively evolves workflow structures and significantly enhances diagnostic accuracy over time. This work represents the first fully automated framework for medical agent architecture design and offers a scalable, adaptable foundation for deploying intelligent agents in real-world clinical environments.
Toward Edge General Intelligence with Agentic AI and Agentification: Concepts, Technologies, and Future Directions
The rapid expansion of sixth-generation (6G) wireless networks and the Internet of Things (IoT) has catalyzed the evolution from centralized cloud intelligence towards decentralized edge general intelligence. However, traditional edge intelligence methods, characterized by static models and limited cognitive autonomy, fail to address the dynamic, heterogeneous, and resource-constrained scenarios inherent to emerging edge networks. Agentic artificial intelligence (Agentic AI) emerges as a transformative solution, enabling edge systems to autonomously perceive multimodal environments, reason contextually, and adapt proactively through continuous perception-reasoning-action loops. In this context, the agentification of edge intelligence serves as a key paradigm shift, where distributed entities evolve into autonomous agents capable of collaboration and continual adaptation. This paper presents a comprehensive survey dedicated to Agentic AI and agentification frameworks tailored explicitly for edge general intelligence. First, we systematically introduce foundational concepts and clarify distinctions from traditional edge intelligence paradigms. Second, we analyze important enabling technologies, including compact model compression, energy-aware computing strategies, robust connectivity frameworks, and advanced knowledge representation and reasoning mechanisms. Third, we provide representative case studies demonstrating Agentic AI's capabilities in low-altitude economy networks, intent-driven networking, vehicular networks, and human-centric service provisioning, supported by numerical evaluations. Furthermore, we identify current research challenges, review emerging open-source platforms, and highlight promising future research directions to guide robust, scalable, and trustworthy Agentic AI deployments for next-generation edge environments.
PROV-AGENT: Unified Provenance for Tracking AI Agent Interactions in Agentic Workflows
Large Language Models (LLMs) and other foundation models are increasingly used as the core of AI agents. In agentic workflows, these agents plan tasks, interact with humans and peers, and influence scientific outcomes across federated and heterogeneous environments. However, agents can hallucinate or reason incorrectly, propagating errors when one agent's output becomes another's input. Thus, assuring that agents' actions are transparent, traceable, reproducible, and reliable is critical to assess hallucination risks and mitigate their workflow impacts. While provenance techniques have long supported these principles, existing methods fail to capture and relate agent-centric metadata such as prompts, responses, and decisions with the broader workflow context and downstream outcomes. In this paper, we introduce PROV-AGENT, a provenance model that extends W3C PROV and leverages the Model Context Protocol (MCP) and data observability to integrate agent interactions into end-to-end workflow provenance. Our contributions include: (1) a provenance model tailored for agentic workflows, (2) a near real-time, open-source system for capturing agentic provenance, and (3) a cross-facility evaluation spanning edge, cloud, and HPC environments, demonstrating support for critical provenance queries and agent reliability analysis.
Factored Agents: Decoupling In-Context Learning and Memorization for Robust Tool Use
In this paper, we propose a novel factored agent architecture designed to overcome the limitations of traditional single-agent systems in agentic AI. Our approach decomposes the agent into two specialized components: (1) a large language model (LLM) that serves as a high level planner and in-context learner, which may use dynamically available information in user prompts, (2) a smaller language model which acts as a memorizer of tool format and output. This decoupling addresses prevalent issues in monolithic designs, including malformed, missing, and hallucinated API fields, as well as suboptimal planning in dynamic environments. Empirical evaluations demonstrate that our factored architecture significantly improves planning accuracy and error resilience, while elucidating the inherent trade-off between in-context learning and static memorization. These findings suggest that a factored approach is a promising pathway for developing more robust and adaptable agentic AI systems.
A-MEM: Agentic Memory for LLM Agents
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
Improving the Efficiency of LLM Agent Systems through Trajectory Reduction
Multi-turn agent systems based on Large Language Models (LLMs) have been increasingly popular for software engineering tasks. While LLM agents show decent effectiveness, the high computational cost of input tokens due to the ever-growing trajectory remains an efficiency concern for their applications. Efficiency is largely neglected in existing studies and agent products, and this paper fills the gap by introducing an inference-time trajectory reduction approach to reduce the cost of agents. Through analyzing existing agent trajectories, we demonstrate that useless, redundant, and expired information is widespread in all trajectories, which can be identified and reduced without harming the agent's performance. We then design a simple yet effective trajectory reduction approach, AgentDiet, which automatically removes such waste information. We implement AgentDiet on a top-performing coding agent, and the evaluation on two LLMs and two benchmarks shows that AgentDiet can reduce input tokens by 39.9% ~ 59.7%, or the final computational cost by 21.1% ~ 35.9%, while maintaining the same agent performance. This indicates that trajectory reduction is a promising direction for agent systems.
Automated Composition of Agents: A Knapsack Approach for Agentic Component Selection
Designing effective agentic systems requires the seamless composition and integration of agents, tools, and models within dynamic and uncertain environments. Most existing methods rely on static, semantic retrieval approaches for tool or agent discovery. However, effective reuse and composition of existing components remain challenging due to incomplete capability descriptions and the limitations of retrieval methods. Component selection suffers because the decisions are not based on capability, cost, and real-time utility. To address these challenges, we introduce a structured, automated framework for agentic system composition that is inspired by the knapsack problem. Our framework enables a composer agent to systematically identify, select, and assemble an optimal set of agentic components by jointly considering performance, budget constraints, and compatibility. By dynamically testing candidate components and modeling their utility in real-time, our approach streamlines the assembly of agentic systems and facilitates scalable reuse of resources. Empirical evaluation with Claude 3.5 Sonnet across five benchmarking datasets shows that our online-knapsack-based composer consistently lies on the Pareto frontier, achieving higher success rates at significantly lower component costs compared to our baselines. In the single-agent setup, the online knapsack composer shows a success rate improvement of up to 31.6% in comparison to the retrieval baselines. In multi-agent systems, the online knapsack composer increases success rate from 37% to 87% when agents are selected from an agent inventory of 100+ agents. The substantial performance gap confirms the robust adaptability of our method across diverse domains and budget constraints.
Scaling Large-Language-Model-based Multi-Agent Collaboration
Pioneering advancements in large language model-powered agents have underscored the design pattern of multi-agent collaboration, demonstrating that collective intelligence can surpass the capabilities of each individual. Inspired by the neural scaling law, which posits that increasing neurons leads to emergent abilities, this study investigates whether a similar principle applies to increasing agents in multi-agent collaboration. Technically, we propose multi-agent collaboration networks (MacNet), which utilize directed acyclic graphs to organize agents and streamline their interactive reasoning via topological ordering, with solutions derived from their dialogues. Extensive experiments show that MacNet consistently outperforms baseline models, enabling effective agent collaboration across various network topologies and supporting cooperation among more than a thousand agents. Notably, we observed a small-world collaboration phenomenon, where topologies resembling small-world properties achieved superior performance. Additionally, we identified a collaborative scaling law, indicating that normalized solution quality follows a logistic growth pattern as scaling agents, with collaborative emergence occurring much earlier than previously observed instances of neural emergence. The code and data will be available at https://github.com/OpenBMB/ChatDev.
DSAEval: Evaluating Data Science Agents on a Wide Range of Real-World Data Science Problems
Recent LLM-based data agents aim to automate data science tasks ranging from data analysis to deep learning. However, the open-ended nature of real-world data science problems, which often span multiple taxonomies and lack standard answers, poses a significant challenge for evaluation. To address this, we introduce DSAEval, a benchmark comprising 641 real-world data science problems grounded in 285 diverse datasets, covering both structured and unstructured data (e.g., vision and text). DSAEval incorporates three distinctive features: (1) Multimodal Environment Perception, which enables agents to interpret observations from multiple modalities including text and vision; (2) Multi-Query Interactions, which mirror the iterative and cumulative nature of real-world data science projects; and (3) Multi-Dimensional Evaluation, which provides a holistic assessment across reasoning, code, and results. We systematically evaluate 11 advanced agentic LLMs using DSAEval. Our results show that Claude-Sonnet-4.5 achieves the strongest overall performance, GPT-5.2 is the most efficient, and MiMo-V2-Flash is the most cost-effective. We further demonstrate that multimodal perception consistently improves performance on vision-related tasks, with gains ranging from 2.04% to 11.30%. Overall, while current data science agents perform well on structured data and routine data anlysis workflows, substantial challenges remain in unstructured domains. Finally, we offer critical insights and outline future research directions to advance the development of data science agents.
AgentOrchestra: A Hierarchical Multi-Agent Framework for General-Purpose Task Solving
Recent advances in agent systems have demonstrated remarkable capabilities in solving both general-purpose and highly complex tasks. However, most current models lack mechanisms for coordinating specialized agents and have limited ability to generalize to new or diverse domains. To this end, we introduce AgentOrchestra, a hierarchical multi-agent framework for general-purpose task solving that integrates high-level planning with modular agent collaboration. Drawing inspiration from a conductor orchestrating a symphony, and grounded in the principles of extensibility, multimodality, modularity, and coordination, it features a central planning agent that decomposes complex objectives and delegates sub-tasks to a team of specialized agents. Each sub-agent is equipped with general programming tools, as well as abilities to tackle a wide range of real-world specific tasks, including data analysis, file operations, web navigation, and interactive reasoning in dynamic multimodal environments. Notably, AgentOrchestra introduces an MCP Manager Agent that enables intelligent evolution through dynamic tool creation, retrieval, and reuse mechanisms, significantly enhancing the system's adaptability and scalability. AgentOrchestra supports flexible orchestration through explicit sub-goal formulation, inter-agent communication, and adaptive role allocation. We evaluate the framework on three widely used benchmarks for assessing LLM-based agent systems. Experimental results show that AgentOrchestra consistently outperforms flat-agent and monolithic baselines in terms of task success rate and adaptability. On the GAIA benchmark testing dataset, AgentOrchestra achieves an average score of 83.39\%, ranking among the top general-purpose agents. These results highlight the effectiveness of hierarchical organization and role specialization in building scalable and general-purpose LLM-based agent systems.
AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search
Large language model (LLM) agents have demonstrated strong capabilities across diverse domains. However, designing high-performing agentic systems remains challenging. Existing agent search methods suffer from three major limitations: (1) an emphasis on optimizing agentic workflows while under-utilizing proven human-designed components such as memory, planning, and tool use; (2) high evaluation costs, as each newly generated agent must be fully evaluated on benchmarks; and (3) inefficient search in large search space. In this work, we introduce a comprehensive framework to address these challenges. First, We propose a hierarchical search space that jointly models agentic workflow and composable functional components, enabling richer agentic system designs. Building on this structured design space, we introduce a predictive value model that estimates agent performance given agentic system and task description, allowing for efficient, low-cost evaluation during the search process. Finally, we present a hierarchical Monte Carlo Tree Search (MCTS) strategy informed by uncertainty to guide the search. Experiments on seven benchmarks, covering embodied, math, web, tool, and game, show that our method achieves an average performance gain of 8.34\% over state-of-the-art baselines and exhibits faster search progress with steeper improvement trajectories. Code repo is available at https://github.com/Ericccc02/AgentSwift.
A survey of agent interoperability protocols: Model Context Protocol (MCP), Agent Communication Protocol (ACP), Agent-to-Agent Protocol (A2A), and Agent Network Protocol (ANP)
Large language model powered autonomous agents demand robust, standardized protocols to integrate tools, share contextual data, and coordinate tasks across heterogeneous systems. Ad-hoc integrations are difficult to scale, secure, and generalize across domains. This survey examines four emerging agent communication protocols: Model Context Protocol (MCP), Agent Communication Protocol (ACP), Agent-to-Agent Protocol (A2A), and Agent Network Protocol (ANP), each addressing interoperability in deployment contexts. MCP provides a JSON-RPC client-server interface for secure tool invocation and typed data exchange. ACP defines a general-purpose communication protocol over RESTful HTTP, supporting MIME-typed multipart messages and synchronous and asynchronous interactions. Its lightweight and runtime-independent design enables scalable agent invocation, while features like session management, message routing, and integration with role-based and decentralized identifiers (DIDs). A2A enables peer-to-peer task delegation using capability-based Agent Cards, supporting secure and scalable collaboration across enterprise agent workflows. ANP supports open network agent discovery and secure collaboration using W3C decentralized identifiers DIDs and JSON-LD graphs. The protocols are compared across multiple dimensions, including interaction modes, discovery mechanisms, communication patterns, and security models. Based on the comparative analysis, a phased adoption roadmap is proposed: beginning with MCP for tool access, followed by ACP for structured, multimodal messaging session-aware interaction and both online and offline agent discovery across scalable, HTTP-based deployments A2A for collaborative task execution, and extending to ANP for decentralized agent marketplaces. This work provides a comprehensive foundation for designing secure, interoperable, and scalable ecosystems of LLM-powered agents.
AgentsNet: Coordination and Collaborative Reasoning in Multi-Agent LLMs
Large-language models (LLMs) have demonstrated powerful problem-solving capabilities, in particular when organized in multi-agent systems. However, the advent of such systems also raises several questions on the ability of a complex network of agents to effectively self-organize and collaborate. While measuring performance on standard reasoning benchmarks indicates how well multi-agent systems can solve reasoning tasks, it is unclear whether these systems are able to leverage their topology effectively. Here, we propose AgentsNet, a new benchmark for multi-agent reasoning. By drawing inspiration from classical problems in distributed systems and graph theory, AgentsNet measures the ability of multi-agent systems to collaboratively form strategies for problem-solving, self-organization, and effective communication given a network topology. We evaluate a variety of baseline methods on AgentsNet including homogeneous networks of agents which first have to agree on basic protocols for organization and communication. We find that some frontier LLMs are already demonstrating strong performance for small networks but begin to fall off once the size of the network scales. While existing multi-agent benchmarks cover at most 2-5 agents, AgentsNet is practically unlimited in size and can scale with new generations of LLMs. As such, we also probe frontier models in a setup with up to 100 agents.
LLM Agent Operating System
The integration and deployment of large language model (LLM)-based intelligent agents have been fraught with challenges that compromise their efficiency and efficacy. Among these issues are sub-optimal scheduling and resource allocation of agent requests over the LLM, the difficulties in maintaining context during interactions between agent and LLM, and the complexities inherent in integrating heterogeneous agents with different capabilities and specializations. The rapid increase of agent quantity and complexity further exacerbates these issues, often leading to bottlenecks and sub-optimal utilization of resources. Inspired by these challenges, this paper presents AIOS, an LLM agent operating system, which embeds large language model into operating systems (OS). Specifically, AIOS is designed to optimize resource allocation, facilitate context switch across agents, enable concurrent execution of agents, provide tool service for agents, and maintain access control for agents. We present the architecture of such an operating system, outline the core challenges it aims to resolve, and provide the basic design and implementation of the AIOS. Our experiments on concurrent execution of multiple agents demonstrate the reliability and efficiency of our AIOS modules. Through this, we aim to not only improve the performance and efficiency of LLM agents but also to pioneer for better development and deployment of the AIOS ecosystem in the future. The project is open-source at https://github.com/agiresearch/AIOS.
AgentStore: Scalable Integration of Heterogeneous Agents As Specialized Generalist Computer Assistant
Digital agents capable of automating complex computer tasks have attracted considerable attention due to their immense potential to enhance human-computer interaction. However, existing agent methods exhibit deficiencies in their generalization and specialization capabilities, especially in handling open-ended computer tasks in real-world environments. Inspired by the rich functionality of the App store, we present AgentStore, a scalable platform designed to dynamically integrate heterogeneous agents for automating computer tasks. AgentStore empowers users to integrate third-party agents, allowing the system to continuously enrich its capabilities and adapt to rapidly evolving operating systems. Additionally, we propose a novel core MetaAgent with the AgentToken strategy to efficiently manage diverse agents and utilize their specialized and generalist abilities for both domain-specific and system-wide tasks. Extensive experiments on three challenging benchmarks demonstrate that AgentStore surpasses the limitations of previous systems with narrow capabilities, particularly achieving a significant improvement from 11.21\% to 23.85\% on the OSWorld benchmark, more than doubling the previous results. Comprehensive quantitative and qualitative results further demonstrate AgentStore's ability to enhance agent systems in both generalization and specialization, underscoring its potential for developing the specialized generalist computer assistant. All our codes will be made publicly available in https://chengyou-jia.github.io/AgentStore-Home.
AgentRxiv: Towards Collaborative Autonomous Research
Progress in scientific discovery is rarely the result of a single "Eureka" moment, but is rather the product of hundreds of scientists incrementally working together toward a common goal. While existing agent workflows are capable of producing research autonomously, they do so in isolation, without the ability to continuously improve upon prior research results. To address these challenges, we introduce AgentRxiv-a framework that lets LLM agent laboratories upload and retrieve reports from a shared preprint server in order to collaborate, share insights, and iteratively build on each other's research. We task agent laboratories to develop new reasoning and prompting techniques and find that agents with access to their prior research achieve higher performance improvements compared to agents operating in isolation (11.4% relative improvement over baseline on MATH-500). We find that the best performing strategy generalizes to benchmarks in other domains (improving on average by 3.3%). Multiple agent laboratories sharing research through AgentRxiv are able to work together towards a common goal, progressing more rapidly than isolated laboratories, achieving higher overall accuracy (13.7% relative improvement over baseline on MATH-500). These findings suggest that autonomous agents may play a role in designing future AI systems alongside humans. We hope that AgentRxiv allows agents to collaborate toward research goals and enables researchers to accelerate discovery.
DataFlow: An LLM-Driven Framework for Unified Data Preparation and Workflow Automation in the Era of Data-Centric AI
The rapidly growing demand for high-quality data in Large Language Models (LLMs) has intensified the need for scalable, reliable, and semantically rich data preparation pipelines. However, current practices remain dominated by ad-hoc scripts and loosely specified workflows, which lack principled abstractions, hinder reproducibility, and offer limited support for model-in-the-loop data generation. To address these challenges, we present DataFlow, a unified and extensible LLM-driven data preparation framework. DataFlow is designed with system-level abstractions that enable modular, reusable, and composable data transformations, and provides a PyTorch-style pipeline construction API for building debuggable and optimizable dataflows. The framework consists of nearly 200 reusable operators and six domain-general pipelines spanning text, mathematical reasoning, code, Text-to-SQL, agentic RAG, and large-scale knowledge extraction. To further improve usability, we introduce DataFlow-Agent, which automatically translates natural-language specifications into executable pipelines via operator synthesis, pipeline planning, and iterative verification. Across six representative use cases, DataFlow consistently improves downstream LLM performance. Our math, code, and text pipelines outperform curated human datasets and specialized synthetic baselines, achieving up to +3\% execution accuracy in Text-to-SQL over SynSQL, +7\% average improvements on code benchmarks, and 1--3 point gains on MATH, GSM8K, and AIME. Moreover, a unified 10K-sample dataset produced by DataFlow enables base models to surpass counterparts trained on 1M Infinity-Instruct data. These results demonstrate that DataFlow provides a practical and high-performance substrate for reliable, reproducible, and scalable LLM data preparation, and establishes a system-level foundation for future data-centric AI development.
Memory in the Age of AI Agents
Memory has emerged, and will continue to remain, a core capability of foundation model-based agents. As research on agent memory rapidly expands and attracts unprecedented attention, the field has also become increasingly fragmented. Existing works that fall under the umbrella of agent memory often differ substantially in their motivations, implementations, and evaluation protocols, while the proliferation of loosely defined memory terminologies has further obscured conceptual clarity. Traditional taxonomies such as long/short-term memory have proven insufficient to capture the diversity of contemporary agent memory systems. This work aims to provide an up-to-date landscape of current agent memory research. We begin by clearly delineating the scope of agent memory and distinguishing it from related concepts such as LLM memory, retrieval augmented generation (RAG), and context engineering. We then examine agent memory through the unified lenses of forms, functions, and dynamics. From the perspective of forms, we identify three dominant realizations of agent memory, namely token-level, parametric, and latent memory. From the perspective of functions, we propose a finer-grained taxonomy that distinguishes factual, experiential, and working memory. From the perspective of dynamics, we analyze how memory is formed, evolved, and retrieved over time. To support practical development, we compile a comprehensive summary of memory benchmarks and open-source frameworks. Beyond consolidation, we articulate a forward-looking perspective on emerging research frontiers, including memory automation, reinforcement learning integration, multimodal memory, multi-agent memory, and trustworthiness issues. We hope this survey serves not only as a reference for existing work, but also as a conceptual foundation for rethinking memory as a first-class primitive in the design of future agentic intelligence.
Flow: A Modular Approach to Automated Agentic Workflow Generation
Multi-agent frameworks powered by large language models (LLMs) have demonstrated great success in automated planning and task execution. However, the effective adjustment of Agentic workflows during execution has not been well-studied. A effective workflow adjustment is crucial, as in many real-world scenarios, the initial plan must adjust to unforeseen challenges and changing conditions in real-time to ensure the efficient execution of complex tasks. In this paper, we define workflows as an activity-on-vertex (AOV) graphs. We continuously refine the workflow by dynamically adjusting task allocations based on historical performance and previous AOV with LLM agents. To further enhance system performance, we emphasize modularity in workflow design based on measuring parallelism and dependence complexity. Our proposed multi-agent framework achieved efficient sub-task concurrent execution, goal achievement, and error tolerance. Empirical results across different practical tasks demonstrate dramatic improvements in the efficiency of multi-agent frameworks through dynamic workflow updating and modularization.
Helmsman: Autonomous Synthesis of Federated Learning Systems via Multi-Agent Collaboration
Federated Learning (FL) offers a powerful paradigm for training models on decentralized data, but its promise is often undermined by the immense complexity of designing and deploying robust systems. The need to select, combine, and tune strategies for multifaceted challenges like data heterogeneity and system constraints has become a critical bottleneck, resulting in brittle, bespoke solutions. To address this, we introduce Helmsman, a novel multi-agent system that automates the end-to-end synthesis of federated learning systems from high-level user specifications. It emulates a principled research and development workflow through three collaborative phases: (1) interactive human-in-the-loop planning to formulate a sound research plan, (2) modular code generation by supervised agent teams, and (3) a closed-loop of autonomous evaluation and refinement in a sandboxed simulation environment. To facilitate rigorous evaluation, we also introduce AgentFL-Bench, a new benchmark comprising 16 diverse tasks designed to assess the system-level generation capabilities of agentic systems in FL. Extensive experiments demonstrate that our approach generates solutions competitive with, and often superior to, established hand-crafted baselines. Our work represents a significant step towards the automated engineering of complex decentralized AI systems.
ASIC-Agent: An Autonomous Multi-Agent System for ASIC Design with Benchmark Evaluation
Large Language Models (LLMs) have demonstrated remarkable capabilities in Register Transfer Level (RTL) design, enabling high-quality code generation from natural language descriptions. However, LLMs alone face significant limitations in real-world hardware design workflows, including the inability to execute code, lack of debugging capabilities, and absence of long-term memory. To address these challenges, we present ASIC-Agent, an autonomous system designed specifically for digital ASIC design tasks. ASIC-Agent enhances base LLMs with a multi-agent architecture incorporating specialized sub-agents for RTL generation, verification, OpenLane hardening, and Caravel chip integration, all operating within a comprehensive sandbox environment with access to essential hardware design tools. The system leverages a vector database containing documentation, API references, error knowledge, and curated insights from the open-source silicon community. To evaluate ASIC-Agent's performance, we introduce ASIC-Agent-Bench, the first benchmark specifically designed to assess agentic systems in hardware design tasks. We evaluate ASIC-Agent with various base LLMs, providing quantitative comparisons and qualitative insights into agent behavior across different design scenarios. Our results demonstrate that ASIC-Agent, when powered by Claude 4 Sonnet, successfully automates a broad range of ASIC design tasks spanning varying levels of complexity, showing the potential of significantly accelerating the ASIC design workflow.
LLM-Powered Decentralized Generative Agents with Adaptive Hierarchical Knowledge Graph for Cooperative Planning
Developing intelligent agents for long-term cooperation in dynamic open-world scenarios is a major challenge in multi-agent systems. Traditional Multi-agent Reinforcement Learning (MARL) frameworks like centralized training decentralized execution (CTDE) struggle with scalability and flexibility. They require centralized long-term planning, which is difficult without custom reward functions, and face challenges in processing multi-modal data. CTDE approaches also assume fixed cooperation strategies, making them impractical in dynamic environments where agents need to adapt and plan independently. To address decentralized multi-agent cooperation, we propose Decentralized Adaptive Knowledge Graph Memory and Structured Communication System (DAMCS) in a novel Multi-agent Crafter environment. Our generative agents, powered by Large Language Models (LLMs), are more scalable than traditional MARL agents by leveraging external knowledge and language for long-term planning and reasoning. Instead of fully sharing information from all past experiences, DAMCS introduces a multi-modal memory system organized as a hierarchical knowledge graph and a structured communication protocol to optimize agent cooperation. This allows agents to reason from past interactions and share relevant information efficiently. Experiments on novel multi-agent open-world tasks show that DAMCS outperforms both MARL and LLM baselines in task efficiency and collaboration. Compared to single-agent scenarios, the two-agent scenario achieves the same goal with 63% fewer steps, and the six-agent scenario with 74% fewer steps, highlighting the importance of adaptive memory and structured communication in achieving long-term goals. We publicly release our project at: https://happyeureka.github.io/damcs.
Static Sandboxes Are Inadequate: Modeling Societal Complexity Requires Open-Ended Co-Evolution in LLM-Based Multi-Agent Simulations
What if artificial agents could not just communicate, but also evolve, adapt, and reshape their worlds in ways we cannot fully predict? With llm now powering multi-agent systems and social simulations, we are witnessing new possibilities for modeling open-ended, ever-changing environments. Yet, most current simulations remain constrained within static sandboxes, characterized by predefined tasks, limited dynamics, and rigid evaluation criteria. These limitations prevent them from capturing the complexity of real-world societies. In this paper, we argue that static, task-specific benchmarks are fundamentally inadequate and must be rethought. We critically review emerging architectures that blend llm with multi-agent dynamics, highlight key hurdles such as balancing stability and diversity, evaluating unexpected behaviors, and scaling to greater complexity, and introduce a fresh taxonomy for this rapidly evolving field. Finally, we present a research roadmap centered on open-endedness, continuous co-evolution, and the development of resilient, socially aligned AI ecosystems. We call on the community to move beyond static paradigms and help shape the next generation of adaptive, socially-aware multi-agent simulations.
MOD-X: A Modular Open Decentralized eXchange Framework proposal for Heterogeneous Interoperable Artificial Agents
As Artificial Intelligence systems evolve from monolithic models to ecosystems of specialized agents, the need for standardized communication protocols becomes increasingly critical. This paper introduces MOD-X (Modular Open Decentralized eXchange), a novel architectural framework proposal for agent interoperability that addresses key limitations of existing protocols. Unlike current approaches, MOD-X proposes a layered architecture with a Universal Message Bus, thorough state management, translation capabilities, and blockchain-based security mechanisms. We present MOD-X's architecture, compare it with existing protocols, and demonstrate its application through a worked example how it enables integration between heterogeneous specialist agents (agents with different architectures, vendors, capabilities, and knowledge representations--including rule-based systems, neural networks, symbolic reasoning engines, and legacy software with agent wrappers). MOD-X's key innovations include a publish-subscribe communication model, semantic capability discovery, and dynamic workflow orchestration--providing a framework that bridges theoretical formalism with practical implementation. This architecture addresses the growing need for truly decentralized, interoperable agent ecosystems that can scale effectively without the need for central coordination.
AgencyBench: Benchmarking the Frontiers of Autonomous Agents in 1M-Token Real-World Contexts
Large Language Models (LLMs) based autonomous agents demonstrate multifaceted capabilities to contribute substantially to economic production. However, existing benchmarks remain focused on single agentic capability, failing to capture long-horizon real-world scenarios. Moreover, the reliance on human-in-the-loop feedback for realistic tasks creates a scalability bottleneck, hindering automated rollout collection and evaluation. To bridge this gap, we introduce AgencyBench, a comprehensive benchmark derived from daily AI usage, evaluating 6 core agentic capabilities across 32 real-world scenarios, comprising 138 tasks with specific queries, deliverables, and rubrics. These scenarios require an average of 90 tool calls, 1 million tokens, and hours of execution time to resolve. To enable automated evaluation, we employ a user simulation agent to provide iterative feedback, and a Docker sandbox to conduct visual and functional rubric-based assessment. Experiments reveal that closed-source models significantly outperform open-source models (48.4% vs 32.1%). Further analysis reveals significant disparities across models in resource efficiency, feedback-driven self-correction, and specific tool-use preferences. Finally, we investigate the impact of agentic scaffolds, observing that proprietary models demonstrate superior performance within their native ecosystems (e.g., Claude-4.5-Opus via Claude-Agent-SDK), while open-source models exhibit distinct performance peaks, suggesting potential optimization for specific execution frameworks. AgencyBench serves as a critical testbed for next-generation agents, highlighting the necessity of co-optimizing model architecture with agentic frameworks. We believe this work sheds light on the future direction of autonomous agents, and we release the full benchmark and evaluation toolkit at https://github.com/GAIR-NLP/AgencyBench.
GoalfyMax: A Protocol-Driven Multi-Agent System for Intelligent Experience Entities
Modern enterprise environments demand intelligent systems capable of handling complex, dynamic, and multi-faceted tasks with high levels of autonomy and adaptability. However, traditional single-purpose AI systems often lack sufficient coordination, memory reuse, and task decomposition capabilities, limiting their scalability in realistic settings. To address these challenges, we present GoalfyMax, a protocol-driven framework for end-to-end multi-agent collaboration. GoalfyMax introduces a standardized Agent-to-Agent (A2A) communication layer built on the Model Context Protocol (MCP), allowing independent agents to coordinate through asynchronous, protocol-compliant interactions. It incorporates the Experience Pack (XP) architecture, a layered memory system that preserves both task rationales and execution traces, enabling structured knowledge retention and continual learning. Moreover, our system integrates advanced features including multi-turn contextual dialogue, long-short term memory modules, and dynamic safety validation, supporting robust, real-time strategy adaptation. Empirical results on complex task orchestration benchmarks and case study demonstrate that GoalfyMax achieves superior adaptability, coordination, and experience reuse compared to baseline frameworks. These findings highlight its potential as a scalable, future-ready foundation for multi-agent intelligent systems.
Lattica: A Decentralized Cross-NAT Communication Framework for Scalable AI Inference and Training
The rapid expansion of distributed Artificial Intelligence (AI) workloads beyond centralized data centers creates a demand for new communication substrates. These substrates must operate reliably in heterogeneous and permissionless environments, where Network Address Translators (NATs) and firewalls impose significant constraints. Existing solutions, however, are either designed for controlled data center deployments or implemented as monolithic systems that tightly couple machine learning logic with networking code. To address these limitations, we present Lattica, a decentralized cross-NAT communication framework designed to support distributed AI systems. Lattica integrates three core components. First, it employs a robust suite of NAT traversal mechanisms to establish a globally addressable peer-to-peer mesh. Second, it provides a decentralized data store based on Conflict-free Replicated Data Types (CRDTs), ensuring verifiable and eventually consistent state replication. Third, it incorporates a content discovery layer that leverages distributed hash tables (DHTs) together with an optimized RPC protocol for efficient model synchronization. By integrating these components, Lattica delivers a complete protocol stack for sovereign, resilient, and scalable AI systems that operate independently of centralized intermediaries. It is directly applicable to edge intelligence, collaborative reinforcement learning, and other large-scale distributed machine learning scenarios.
From AI for Science to Agentic Science: A Survey on Autonomous Scientific Discovery
Artificial intelligence (AI) is reshaping scientific discovery, evolving from specialized computational tools into autonomous research partners. We position Agentic Science as a pivotal stage within the broader AI for Science paradigm, where AI systems progress from partial assistance to full scientific agency. Enabled by large language models (LLMs), multimodal systems, and integrated research platforms, agentic AI shows capabilities in hypothesis generation, experimental design, execution, analysis, and iterative refinement -- behaviors once regarded as uniquely human. This survey provides a domain-oriented review of autonomous scientific discovery across life sciences, chemistry, materials science, and physics. We unify three previously fragmented perspectives -- process-oriented, autonomy-oriented, and mechanism-oriented -- through a comprehensive framework that connects foundational capabilities, core processes, and domain-specific realizations. Building on this framework, we (i) trace the evolution of AI for Science, (ii) identify five core capabilities underpinning scientific agency, (iii) model discovery as a dynamic four-stage workflow, (iv) review applications across the above domains, and (v) synthesize key challenges and future opportunities. This work establishes a domain-oriented synthesis of autonomous scientific discovery and positions Agentic Science as a structured paradigm for advancing AI-driven research.
HALO: Hierarchical Autonomous Logic-Oriented Orchestration for Multi-Agent LLM Systems
Recent advancements in Multi-Agent Systems (MAS) powered by Large Language Models (LLMs) have demonstrated tremendous potential in diverse task scenarios. Nonetheless, existing agentic systems typically rely on predefined agent-role design spaces and static communication structures, limiting their adaptability as well as flexibility in complex interaction environments and leading to subpar performance on highly specialized and expert-level tasks. To address these issues, we introduce HALO, a multi-agent collaboration framework based on a hierarchical reasoning architecture. Specifically, we incorporate a high-level planning agent for task decomposition, mid-level role-design agents for subtask-specific agent instantiation, and low-level inference agents for subtask execution. Particularly, subtask execution is reformulated as a structured workflow search problem, where Monte Carlo Tree Search (MCTS) systematically explores the agentic action space to construct optimal reasoning trajectories. Additionally, as the majority of users lack expertise in prompt engineering, we leverage an Adaptive Prompt Refinement module to transform raw queries into task-specific prompts. Empirical evaluations on Code Generation (HumanEval), General Reasoning (MMLU), and Arithmetic Reasoning (MATH) benchmark datasets highlight the effectiveness of HALO, yielding a 14.4% average improvement over state-of-the-art baselines. Notably, HALO achieves up to 13.3% performance gain on the Moral Scenarios subject in the MMLU benchmark and up to 19.6% performance gain on the Algebra subarea in the MATH benchmark, indicating its advanced proficiency in tackling highly specialized and expert-level tasks. The code repository is available at https://github.com/23japhone/HALO.
EnvX: Agentize Everything with Agentic AI
The widespread availability of open-source repositories has led to a vast collection of reusable software components, yet their utilization remains manual, error-prone, and disconnected. Developers must navigate documentation, understand APIs, and write integration code, creating significant barriers to efficient software reuse. To address this, we present EnvX, a framework that leverages Agentic AI to agentize GitHub repositories, transforming them into intelligent, autonomous agents capable of natural language interaction and inter-agent collaboration. Unlike existing approaches that treat repositories as static code resources, EnvX reimagines them as active agents through a three-phase process: (1) TODO-guided environment initialization, which sets up the necessary dependencies, data, and validation datasets; (2) human-aligned agentic automation, allowing repository-specific agents to autonomously perform real-world tasks; and (3) Agent-to-Agent (A2A) protocol, enabling multiple agents to collaborate. By combining large language model capabilities with structured tool integration, EnvX automates not just code generation, but the entire process of understanding, initializing, and operationalizing repository functionality. We evaluate EnvX on the GitTaskBench benchmark, using 18 repositories across domains such as image processing, speech recognition, document analysis, and video manipulation. Our results show that EnvX achieves a 74.07% execution completion rate and 51.85% task pass rate, outperforming existing frameworks. Case studies further demonstrate EnvX's ability to enable multi-repository collaboration via the A2A protocol. This work marks a shift from treating repositories as passive code resources to intelligent, interactive agents, fostering greater accessibility and collaboration within the open-source ecosystem.
TRiSM for Agentic AI: A Review of Trust, Risk, and Security Management in LLM-based Agentic Multi-Agent Systems
Agentic AI systems, built on large language models (LLMs) and deployed in multi-agent configurations, are redefining intelligent autonomy, collaboration and decision-making across enterprise and societal domains. This review presents a structured analysis of Trust, Risk, and Security Management (TRiSM) in the context of LLM-based agentic multi-agent systems (AMAS). We begin by examining the conceptual foundations of agentic AI, its architectural differences from traditional AI agents, and the emerging system designs that enable scalable, tool-using autonomy. The TRiSM in the agentic AI framework is then detailed through four pillars governance, explainability, ModelOps, and privacy/security each contextualized for agentic LLMs. We identify unique threat vectors and introduce a comprehensive risk taxonomy for the agentic AI applications, supported by case studies illustrating real-world vulnerabilities. Furthermore, the paper also surveys trust-building mechanisms, transparency and oversight techniques, and state-of-the-art explainability strategies in distributed LLM agent systems. Additionally, metrics for evaluating trust, interpretability, and human-centered performance are reviewed alongside open benchmarking challenges. Security and privacy are addressed through encryption, adversarial defense, and compliance with evolving AI regulations. The paper concludes with a roadmap for responsible agentic AI, proposing research directions to align emerging multi-agent systems with robust TRiSM principles for safe, accountable, and transparent deployment.
DataLab: A Unifed Platform for LLM-Powered Business Intelligence
Business intelligence (BI) transforms large volumes of data within modern organizations into actionable insights for informed decision-making. Recently, large language model (LLM)-based agents have streamlined the BI workflow by automatically performing task planning, reasoning, and actions in executable environments based on natural language (NL) queries. However, existing approaches primarily focus on individual BI tasks such as NL2SQL and NL2VIS. The fragmentation of tasks across different data roles and tools lead to inefficiencies and potential errors due to the iterative and collaborative nature of BI. In this paper, we introduce DataLab, a unified BI platform that integrates a one-stop LLM-based agent framework with an augmented computational notebook interface. DataLab supports a wide range of BI tasks for different data roles by seamlessly combining LLM assistance with user customization within a single environment. To achieve this unification, we design a domain knowledge incorporation module tailored for enterprise-specific BI tasks, an inter-agent communication mechanism to facilitate information sharing across the BI workflow, and a cell-based context management strategy to enhance context utilization efficiency in BI notebooks. Extensive experiments demonstrate that DataLab achieves state-of-the-art performance on various BI tasks across popular research benchmarks. Moreover, DataLab maintains high effectiveness and efficiency on real-world datasets from Tencent, achieving up to a 58.58% increase in accuracy and a 61.65% reduction in token cost on enterprise-specific BI tasks.
Enterprise Deep Research: Steerable Multi-Agent Deep Research for Enterprise Analytics
As information grows exponentially, enterprises face increasing pressure to transform unstructured data into coherent, actionable insights. While autonomous agents show promise, they often struggle with domain-specific nuances, intent alignment, and enterprise integration. We present Enterprise Deep Research (EDR), a multi-agent system that integrates (1) a Master Planning Agent for adaptive query decomposition, (2) four specialized search agents (General, Academic, GitHub, LinkedIn), (3) an extensible MCP-based tool ecosystem supporting NL2SQL, file analysis, and enterprise workflows, (4) a Visualization Agent for data-driven insights, and (5) a reflection mechanism that detects knowledge gaps and updates research direction with optional human-in-the-loop steering guidance. These components enable automated report generation, real-time streaming, and seamless enterprise deployment, as validated on internal datasets. On open-ended benchmarks including DeepResearch Bench and DeepConsult, EDR outperforms state-of-the-art agentic systems without any human steering. We release the EDR framework and benchmark trajectories to advance research on multi-agent reasoning applications. Code at https://github.com/SalesforceAIResearch/enterprise-deep-research and Dataset at https://huggingface.co/datasets/Salesforce/EDR-200
Experiences with Model Context Protocol Servers for Science and High Performance Computing
Large language model (LLM)-powered agents are increasingly used to plan and execute scientific workflows, yet most research cyberinfrastructure (CI) exposes heterogeneous APIs and implements security models that present barriers for use by agents. We report on our experience using the Model Context Protocol (MCP) as a unifying interface that makes research capabilities discoverable, invokable, and composable. Our approach is pragmatic: we implement thin MCP servers over mature services, including Globus Transfer, Compute, and Search; status APIs exposed by computing facilities; Octopus event fabric; and domain-specific tools such as Garden and Galaxy. We use case studies in computational chemistry, bioinformatics, quantum chemistry, and filesystem monitoring to illustrate how this MCP-oriented architecture can be used in practice. We distill lessons learned and outline open challenges in evaluation and trust for agent-led science.
The Path Ahead for Agentic AI: Challenges and Opportunities
The evolution of Large Language Models (LLMs) from passive text generators to autonomous, goal-driven systems represents a fundamental shift in artificial intelligence. This chapter examines the emergence of agentic AI systems that integrate planning, memory, tool use, and iterative reasoning to operate autonomously in complex environments. We trace the architectural progression from statistical models to transformer-based systems, identifying capabilities that enable agentic behavior: long-range reasoning, contextual awareness, and adaptive decision-making. The chapter provides three contributions: (1) a synthesis of how LLM capabilities extend toward agency through reasoning-action-reflection loops; (2) an integrative framework describing core components perception, memory, planning, and tool execution that bridge LLMs with autonomous behavior; (3) a critical assessment of applications and persistent challenges in safety, alignment, reliability, and sustainability. Unlike existing surveys, we focus on the architectural transition from language understanding to autonomous action, emphasizing the technical gaps that must be resolved before deployment. We identify critical research priorities, including verifiable planning, scalable multi-agent coordination, persistent memory architectures, and governance frameworks. Responsible advancement requires simultaneous progress in technical robustness, interpretability, and ethical safeguards to realize potential while mitigating risks of misalignment and unintended consequences.
Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning
The efficacy of large language models (LLMs) on downstream tasks usually hinges on instruction tuning, which relies critically on the quality of training data. Unfortunately, collecting high-quality and diverse data is both expensive and time-consuming. To mitigate this issue, we propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets through multi-agent collaboration and assessment. The framework adopts a three-pronged strategy. It initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method. Subsequently, the generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality. Finaly, the above process evolves in a dynamic refinement phase, where more effective LLMs are prioritized, enhancing the overall data quality. Our empirical studies, including instruction tuning experiments with models such as Pythia and LLaMA, demonstrate the effectiveness of the proposed framework. Optimized datasets have achieved substantial improvements, with an average increase of 12% and notable gains in specific metrics, such as a 40% improvement in Fermi, as evidenced by benchmarks like MT-bench, Vicuna bench, and WizardLM testset.
Measuring Data Science Automation: A Survey of Evaluation Tools for AI Assistants and Agents
Data science aims to extract insights from data to support decision-making processes. Recently, Large Language Models (LLMs) are increasingly used as assistants for data science, by suggesting ideas, techniques and small code snippets, or for the interpretation of results and reporting. Proper automation of some data-science activities is now promised by the rise of LLM agents, i.e., AI systems powered by an LLM equipped with additional affordances--such as code execution and knowledge bases--that can perform self-directed actions and interact with digital environments. In this paper, we survey the evaluation of LLM assistants and agents for data science. We find (1) a dominant focus on a small subset of goal-oriented activities, largely ignoring data management and exploratory activities; (2) a concentration on pure assistance or fully autonomous agents, without considering intermediate levels of human-AI collaboration; and (3) an emphasis on human substitution, therefore neglecting the possibility of higher levels of automation thanks to task transformation.
IACT: A Self-Organizing Recursive Model for General AI Agents: A Technical White Paper on the Architecture Behind kragent.ai
This technical white paper introduces the Interactive Agents Call Tree (IACT), a computational model designed to address the limitations of static, hard-coded agent workflows. Unlike traditional systems that require pre-defined graphs or specialized programming, IACT operates as a general-purpose autonomous system driven purely by user dialogue. Given a high-level objective, the system autonomously grows a dynamic, recursive agent topology incrementally tailored to the problem's structure. This allows it to scale its organizational complexity to match open-ended tasks. To mitigate the error propagation inherent in unidirectional function calls, IACT introduces interactional redundancy by replacing rigid invocations with bidirectional, stateful dialogues. This mechanism enables runtime error correction and ambiguity resolution. We describe the architecture, design principles, and practical lessons behind the production deployment of this model in the kragent.ai system, presenting qualitative evidence from real-world workflows rather than exhaustive benchmark results.
Harmonia: A Multi-Agent Reinforcement Learning Approach to Data Placement and Migration in Hybrid Storage Systems
Hybrid storage systems (HSS) integrate multiple storage devices with diverse characteristics to deliver high performance and capacity at low cost. The performance of an HSS highly depends on the effectiveness of two key policies: (1) the data-placement policy, which determines the best-fit storage device for incoming data, and (2) the data-migration policy, which dynamically rearranges stored data (i.e., prefetches hot data and evicts cold data) across the devices to sustain high HSS performance. Prior works optimize either data placement or data migration in isolation, which leads to suboptimal HSS performance. Unfortunately, no prior work tries to optimize both policies together. Our goal is to design a holistic data-management technique that optimizes both data-placement and data-migration policies to fully exploit the potential of an HSS, and thus significantly improve system performance. We propose Harmonia, a multi-agent reinforcement learning (RL)-based data-management technique that employs two lightweight autonomous RL agents, a data-placement agent and a data-migration agent, that adapt their policies for the current workload and HSS configuration while coordinating with each other to improve overall HSS performance. We evaluate Harmonia on real HSS configurations with up to four heterogeneous storage devices and seventeen data-intensive workloads. On performance-optimized (cost-optimized) HSS with two storage devices, Harmonia outperforms the best-performing prior approach by 49.5% (31.7%) on average. On an HSS with three (four) devices, Harmonia outperforms the best-performing prior work by 37.0% (42.0%) on average. Harmonia's performance benefits come with low latency (240ns for inference) and storage overheads (206 KiB in DRAM for both RL agents combined). We will open-source Harmonia's implementation to aid future research on HSS.
From Benchmarks to Business Impact: Deploying IBM Generalist Agent in Enterprise Production
Agents are rapidly advancing in automating digital work, but enterprises face a harder challenge: moving beyond prototypes to deployed systems that deliver measurable business value. This path is complicated by fragmented frameworks, slow development, and the absence of standardized evaluation practices. Generalist agents have emerged as a promising direction, excelling on academic benchmarks and offering flexibility across task types, applications, and modalities. Yet, evidence of their use in production enterprise settings remains limited. This paper reports IBM's experience developing and piloting the Computer Using Generalist Agent (CUGA), which has been open-sourced for the community (https://github.com/cuga-project/cuga-agent). CUGA adopts a hierarchical planner--executor architecture with strong analytical foundations, achieving state-of-the-art performance on AppWorld and WebArena. Beyond benchmarks, it was evaluated in a pilot within the Business-Process-Outsourcing talent acquisition domain, addressing enterprise requirements for scalability, auditability, safety, and governance. To support assessment, we introduce BPO-TA, a 26-task benchmark spanning 13 analytics endpoints. In preliminary evaluations, CUGA approached the accuracy of specialized agents while indicating potential for reducing development time and cost. Our contribution is twofold: presenting early evidence of generalist agents operating at enterprise scale, and distilling technical and organizational lessons from this initial pilot. We outline requirements and next steps for advancing research-grade architectures like CUGA into robust, enterprise-ready systems.
Anemoi: A Semi-Centralized Multi-agent System Based on Agent-to-Agent Communication MCP server from Coral Protocol
Recent advances in generalist multi-agent systems (MAS) have largely followed a context-engineering plus centralized paradigm, where a planner agent coordinates multiple worker agents through unidirectional prompt passing. While effective under strong planner models, this design suffers from two critical limitations: (1) strong dependency on the planner's capability, which leads to degraded performance when a smaller LLM powers the planner; and (2) limited inter-agent communication, where collaboration relies on costly prompt concatenation and context injection, introducing redundancy and information loss. To address these challenges, we propose Anemoi, a semi-centralized MAS built on the Agent-to-Agent (A2A) communication MCP server from Coral Protocol. Unlike traditional designs, Anemoi enables structured and direct inter-agent collaboration, allowing all agents to monitor progress, assess results, identify bottlenecks, and propose refinements in real time. This paradigm reduces reliance on a single planner, supports adaptive plan updates, and minimizes redundant context passing, resulting in more scalable and cost-efficient execution. Evaluated on the GAIA benchmark, Anemoi achieved 52.73% accuracy with a small LLM (GPT-4.1-mini) as the planner, surpassing the strongest open-source baseline OWL (43.63%) by +9.09% under identical LLM settings. Our implementation is publicly available at https://github.com/Coral-Protocol/Anemoi.
KramaBench: A Benchmark for AI Systems on Data-to-Insight Pipelines over Data Lakes
Constructing real-world data-to-insight pipelines often involves data extraction from data lakes, data integration across heterogeneous data sources, and diverse operations from data cleaning to analysis. The design and implementation of data science pipelines require domain knowledge, technical expertise, and even project-specific insights. AI systems have shown remarkable reasoning, coding, and understanding capabilities. However, it remains unclear to what extent these capabilities translate into successful design and execution of such complex pipelines. We introduce KRAMABENCH: a benchmark composed of 104 manually-curated real-world data science pipelines spanning 1700 data files from 24 data sources in 6 different domains. We show that these pipelines test the end-to-end capabilities of AI systems on data processing, requiring data discovery, wrangling and cleaning, efficient processing, statistical reasoning, and orchestrating data processing steps given a high-level task. Our evaluation tests 5 general models and 3 code generation models using our reference framework, DS-GURU, which instructs the AI model to decompose a question into a sequence of subtasks, reason through each step, and synthesize Python code that implements the proposed design. Our results on KRAMABENCH show that, although the models are sufficiently capable of solving well-specified data science code generation tasks, when extensive data processing and domain knowledge are required to construct real-world data science pipelines, existing out-of-box models fall short. Progress on KramaBench represents crucial steps towards developing autonomous data science agents for real-world applications. Our code, reference framework, and data are available at https://github.com/mitdbg/KramaBench.
A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static, unable to adapt their internal parameters to novel tasks, evolving knowledge domains, or dynamic interaction contexts. As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck, necessitating agents that can adaptively reason, act, and evolve in real time. This paradigm shift -- from scaling static models to developing self-evolving agents -- has sparked growing interest in architectures and methods enabling continual learning and adaptation from data, interactions, and experiences. This survey provides the first systematic and comprehensive review of self-evolving agents, organized around three foundational dimensions -- what to evolve, when to evolve, and how to evolve. We examine evolutionary mechanisms across agent components (e.g., models, memory, tools, architecture), categorize adaptation methods by stages (e.g., intra-test-time, inter-test-time), and analyze the algorithmic and architectural designs that guide evolutionary adaptation (e.g., scalar rewards, textual feedback, single-agent and multi-agent systems). Additionally, we analyze evaluation metrics and benchmarks tailored for self-evolving agents, highlight applications in domains such as coding, education, and healthcare, and identify critical challenges and research directions in safety, scalability, and co-evolutionary dynamics. By providing a structured framework for understanding and designing self-evolving agents, this survey establishes a roadmap for advancing adaptive agentic systems in both research and real-world deployments, ultimately shedding lights to pave the way for the realization of Artificial Super Intelligence (ASI), where agents evolve autonomously, performing at or beyond human-level intelligence across a wide array of tasks.
Why Do Multi-Agent LLM Systems Fail?
Despite growing enthusiasm for Multi-Agent Systems (MAS), where multiple LLM agents collaborate to accomplish tasks, their performance gains across popular benchmarks remain minimal compared to single-agent frameworks. This gap highlights the need to analyze the challenges hindering MAS effectiveness. In this paper, we present the first comprehensive study of MAS challenges. We analyze five popular MAS frameworks across over 150 tasks, involving six expert human annotators. We identify 14 unique failure modes and propose a comprehensive taxonomy applicable to various MAS frameworks. This taxonomy emerges iteratively from agreements among three expert annotators per study, achieving a Cohen's Kappa score of 0.88. These fine-grained failure modes are organized into 3 categories, (i) specification and system design failures, (ii) inter-agent misalignment, and (iii) task verification and termination. To support scalable evaluation, we integrate MASFT with LLM-as-a-Judge. We also explore if identified failures could be easily prevented by proposing two interventions: improved specification of agent roles and enhanced orchestration strategies. Our findings reveal that identified failures require more complex solutions, highlighting a clear roadmap for future research. We open-source our dataset and LLM annotator.
RHAPSODY: Execution of Hybrid AI-HPC Workflows at Scale
Hybrid AI-HPC workflows combine large-scale simulation, training, high-throughput inference, and tightly coupled, agent-driven control within a single execution campaign. These workflows impose heterogeneous and often conflicting requirements on runtime systems, spanning MPI executables, persistent AI services, fine-grained tasks, and low-latency AI-HPC coupling. Existing systems typically address only subsets of these requirements, limiting their ability to support emerging AI-HPC applications at scale. We present RHAPSODY, a multi-runtime middleware that enables concurrent execution of heterogeneous AI-HPC workloads through uniform abstractions for tasks, services, resources, and execution policies. Rather than replacing existing runtimes, RHAPSODY composes and coordinates them, allowing simulation codes, inference services, and agentic workflows to coexist within a single job allocation on leadership-class HPC platforms. We evaluate RHAPSODY with Dragon and vLLM on multiple HPC systems using representative heterogeneous, inference-at-scale, and tightly coupled AI-HPC workflows. Our results show that RHAPSODY introduces minimal runtime overhead, sustains increasing heterogeneity at scale, achieves near-linear scaling for high-throughput inference workloads, and data- and control-efficient coupling between AI and HPC tasks in agentic workflows.
D3MAS: Decompose, Deduce, and Distribute for Enhanced Knowledge Sharing in Multi-Agent Systems
Multi-agent systems powered by large language models exhibit strong capabilities in collaborative problem-solving. However, these systems suffer from substantial knowledge redundancy. Agents duplicate efforts in retrieval and reasoning processes. This inefficiency stems from a deeper issue: current architectures lack mechanisms to ensure agents share minimal sufficient information at each operational stage. Empirical analysis reveals an average knowledge duplication rate of 47.3\% across agent communications. We propose D3MAS (Decompose, Deduce, and Distribute), a hierarchical coordination framework addressing redundancy through structural design rather than explicit optimization. The framework organizes collaboration across three coordinated layers. Task decomposition filters irrelevant sub-problems early. Collaborative reasoning captures complementary inference paths across agents. Distributed memory provides access to non-redundant knowledge. These layers coordinate through structured message passing in a unified heterogeneous graph. This cross-layer alignment ensures information remains aligned with actual task needs. Experiments on four challenging datasets show that D3MAS consistently improves reasoning accuracy by 8.7\% to 15.6\% and reduces knowledge redundancy by 46\% on average.
