new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 16

A*-Thought: Efficient Reasoning via Bidirectional Compression for Low-Resource Settings

Large Reasoning Models (LRMs) achieve superior performance by extending the thought length. However, a lengthy thinking trajectory leads to reduced efficiency. Most of the existing methods are stuck in the assumption of overthinking and attempt to reason efficiently by compressing the Chain-of-Thought, but this often leads to performance degradation. To address this problem, we introduce A*-Thought, an efficient tree search-based unified framework designed to identify and isolate the most essential thoughts from the extensive reasoning chains produced by these models. It formulates the reasoning process of LRMs as a search tree, where each node represents a reasoning span in the giant reasoning space. By combining the A* search algorithm with a cost function specific to the reasoning path, it can efficiently compress the chain of thought and determine a reasoning path with high information density and low cost. In addition, we also propose a bidirectional importance estimation mechanism, which further refines this search process and enhances its efficiency beyond uniform sampling. Extensive experiments on several advanced math tasks show that A*-Thought effectively balances performance and efficiency over a huge search space. Specifically, A*-Thought can improve the performance of QwQ-32B by 2.39times with low-budget and reduce the length of the output token by nearly 50% with high-budget. The proposed method is also compatible with several other LRMs, demonstrating its generalization capability. The code can be accessed at: https://github.com/AI9Stars/AStar-Thought.

  • 9 authors
·
May 30, 2025

ToTRL: Unlock LLM Tree-of-Thoughts Reasoning Potential through Puzzles Solving

Large language models (LLMs) demonstrate significant reasoning capabilities, particularly through long chain-of-thought (CoT) processes, which can be elicited by reinforcement learning (RL). However, prolonged CoT reasoning presents limitations, primarily verbose outputs due to excessive introspection. The reasoning process in these LLMs often appears to follow a trial-and-error methodology rather than a systematic, logical deduction. In contrast, tree-of-thoughts (ToT) offers a conceptually more advanced approach by modeling reasoning as an exploration within a tree structure. This reasoning structure facilitates the parallel generation and evaluation of multiple reasoning branches, allowing for the active identification, assessment, and pruning of unproductive paths. This process can potentially lead to improved performance and reduced token costs. Building upon the long CoT capability of LLMs, we introduce tree-of-thoughts RL (ToTRL), a novel on-policy RL framework with a rule-based reward. ToTRL is designed to guide LLMs in developing the parallel ToT strategy based on the sequential CoT strategy. Furthermore, we employ LLMs as players in a puzzle game during the ToTRL training process. Solving puzzle games inherently necessitates exploring interdependent choices and managing multiple constraints, which requires the construction and exploration of a thought tree, providing challenging tasks for cultivating the ToT reasoning capability. Our empirical evaluations demonstrate that our ToTQwen3-8B model, trained with our ToTRL, achieves significant improvement in performance and reasoning efficiency on complex reasoning tasks.

  • 7 authors
·
May 19, 2025

RIPPLECOT: Amplifying Ripple Effect of Knowledge Editing in Language Models via Chain-of-Thought In-Context Learning

The ripple effect poses a significant challenge in knowledge editing for large language models. Namely, when a single fact is edited, the model struggles to accurately update the related facts in a sequence, which is evaluated by multi-hop questions linked to a chain of related facts. Recent strategies have moved away from traditional parameter updates to more flexible, less computation-intensive methods, proven to be more effective in addressing the ripple effect. In-context learning (ICL) editing uses a simple demonstration `Imagine that + new fact` to guide LLMs, but struggles with complex multi-hop questions as the new fact alone fails to specify the chain of facts involved in such scenarios. Besides, memory-based editing maintains additional storage for all edits and related facts, requiring continuous updates to stay effective. As a result of these design limitations, the challenge remains, with the highest accuracy being only 33.8% on the MQuAKE-cf benchmarks for Vicuna-7B. To address this, we propose RippleCOT, a novel ICL editing approach integrating Chain-of-Thought (COT) reasoning. RippleCOT structures demonstrations as `newfact, question, thought, answer`, incorporating a thought component to identify and decompose the multi-hop logic within questions. This approach effectively guides the model through complex multi-hop questions with chains of related facts. Comprehensive experiments demonstrate that RippleCOT significantly outperforms the state-of-the-art on the ripple effect, achieving accuracy gains ranging from 7.8% to 87.1%.

  • 4 authors
·
Oct 3, 2024

R$^3$ Prompting: Review, Rephrase and Resolve for Chain-of-Thought Reasoning in Large Language Models under Noisy Context

With the help of Chain-of-Thought (CoT) prompting, Large Language Models (LLMs) have achieved remarkable performance on various reasoning tasks. However, most of them have been evaluated under noise-free context and the dilemma for LLMs to produce inaccurate results under the noisy context has not been fully investigated. Existing studies utilize trigger sentences to encourage LLMs to concentrate on the relevant information but the trigger has limited effect on final answer prediction. Inspired by interactive CoT method, where intermediate reasoning steps are promoted by multiple rounds of interaction between users and LLMs, we propose a novel prompting method, namely R^3 prompting, for CoT reasoning under noisy context. Specifically, R^3 prompting interacts with LLMs to perform key sentence extraction, variable declaration and answer prediction, which corresponds to a thought process of reviewing, rephrasing and resolving. The responses generated at the last interaction will perform as hints to guide toward the responses of the next interaction. Our experiments show that R^3 prompting significantly outperforms existing CoT prompting methods on five reasoning tasks under noisy context. With GPT-3.5-turbo, we observe 3.7% accuracy improvement on average on the reasoning tasks under noisy context compared to the most competitive prompting baseline. More analyses and ablation studies show the robustness and generalization of R^3 prompting method in solving reasoning tasks in LLMs under noisy context.

  • 5 authors
·
Oct 25, 2023

Quiet-STaR: Language Models Can Teach Themselves to Think Before Speaking

When writing and talking, people sometimes pause to think. Although reasoning-focused works have often framed reasoning as a method of answering questions or completing agentic tasks, reasoning is implicit in almost all written text. For example, this applies to the steps not stated between the lines of a proof or to the theory of mind underlying a conversation. In the Self-Taught Reasoner (STaR, Zelikman et al. 2022), useful thinking is learned by inferring rationales from few-shot examples in question-answering and learning from those that lead to a correct answer. This is a highly constrained setting -- ideally, a language model could instead learn to infer unstated rationales in arbitrary text. We present Quiet-STaR, a generalization of STaR in which LMs learn to generate rationales at each token to explain future text, improving their predictions. We address key challenges, including 1) the computational cost of generating continuations, 2) the fact that the LM does not initially know how to generate or use internal thoughts, and 3) the need to predict beyond individual next tokens. To resolve these, we propose a tokenwise parallel sampling algorithm, using learnable tokens indicating a thought's start and end, and an extended teacher-forcing technique. Encouragingly, generated rationales disproportionately help model difficult-to-predict tokens and improve the LM's ability to directly answer difficult questions. In particular, after continued pretraining of an LM on a corpus of internet text with Quiet-STaR, we find zero-shot improvements on GSM8K (5.9%rightarrow10.9%) and CommonsenseQA (36.3%rightarrow47.2%) and observe a perplexity improvement of difficult tokens in natural text. Crucially, these improvements require no fine-tuning on these tasks. Quiet-STaR marks a step towards LMs that can learn to reason in a more general and scalable way.

  • 6 authors
·
Mar 14, 2024 7

Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought

Chain-of-Thought (CoT) reasoning has emerged as a promising approach for enhancing the performance of large language models (LLMs) on complex reasoning tasks. Recently, a series of studies attempt to explain the mechanisms underlying CoT, aiming to deepen the understanding of its efficacy. Nevertheless, the existing research faces two major challenges: (1) a lack of quantitative metrics to assess CoT capabilities and (2) a dearth of guidance on optimizing CoT performance. Motivated by this, in this work, we introduce a novel reasoning boundary framework (RBF) to address these challenges. To solve the lack of quantification, we first define a reasoning boundary (RB) to quantify the upper-bound of CoT and establish a combination law for RB, enabling a practical quantitative approach applicable to various real-world CoT tasks. To address the lack of optimization, we propose three categories of RBs. We further optimize these categories with combination laws focused on RB promotion and reasoning path optimization for CoT improvement. Through extensive experiments on 27 models and 5 tasks, the study validates the existence and rationality of the proposed framework. Furthermore, it explains the effectiveness of 10 CoT strategies and guides optimization from two perspectives. We hope this work can provide a comprehensive understanding of the boundaries and optimization strategies for reasoning in LLMs. Our code and data are available at https://github.com/LightChen233/reasoning-boundary.

  • 5 authors
·
Oct 8, 2024

VideoGen-of-Thought: A Collaborative Framework for Multi-Shot Video Generation

Current video generation models excel at generating short clips but still struggle with creating multi-shot, movie-like videos. Existing models trained on large-scale data on the back of rich computational resources are unsurprisingly inadequate for maintaining a logical storyline and visual consistency across multiple shots of a cohesive script since they are often trained with a single-shot objective. To this end, we propose VideoGen-of-Thought (VGoT), a collaborative and training-free architecture designed specifically for multi-shot video generation. VGoT is designed with three goals in mind as follows. Multi-Shot Video Generation: We divide the video generation process into a structured, modular sequence, including (1) Script Generation, which translates a curt story into detailed prompts for each shot; (2) Keyframe Generation, responsible for creating visually consistent keyframes faithful to character portrayals; and (3) Shot-Level Video Generation, which transforms information from scripts and keyframes into shots; (4) Smoothing Mechanism that ensures a consistent multi-shot output. Reasonable Narrative Design: Inspired by cinematic scriptwriting, our prompt generation approach spans five key domains, ensuring logical consistency, character development, and narrative flow across the entire video. Cross-Shot Consistency: We ensure temporal and identity consistency by leveraging identity-preserving (IP) embeddings across shots, which are automatically created from the narrative. Additionally, we incorporate a cross-shot smoothing mechanism, which integrates a reset boundary that effectively combines latent features from adjacent shots, resulting in smooth transitions and maintaining visual coherence throughout the video. Our experiments demonstrate that VGoT surpasses existing video generation methods in producing high-quality, coherent, multi-shot videos.

  • 11 authors
·
Dec 3, 2024 5

Towards Revealing the Mystery behind Chain of Thought: A Theoretical Perspective

Recent studies have discovered that Chain-of-Thought prompting (CoT) can dramatically improve the performance of Large Language Models (LLMs), particularly when dealing with complex tasks involving mathematics or reasoning. Despite the enormous empirical success, the underlying mechanisms behind CoT and how it unlocks the potential of LLMs remain elusive. In this paper, we take a first step towards theoretically answering these questions. Specifically, we examine the expressivity of LLMs with CoT in solving fundamental mathematical and decision-making problems. By using circuit complexity theory, we first give impossibility results showing that bounded-depth Transformers are unable to directly produce correct answers for basic arithmetic/equation tasks unless the model size grows super-polynomially with respect to the input length. In contrast, we then prove by construction that autoregressive Transformers of constant size suffice to solve both tasks by generating CoT derivations using a commonly used math language format. Moreover, we show LLMs with CoT can handle a general class of decision-making problems known as Dynamic Programming, thus justifying its power in tackling complex real-world tasks. Finally, an extensive set of experiments show that, while Transformers always fail to directly predict the answers, they can consistently learn to generate correct solutions step-by-step given sufficient CoT demonstrations.

  • 6 authors
·
May 24, 2023

Training Multimodal Large Reasoning Models Needs Better Thoughts: A Three-Stage Framework for Long Chain-of-Thought Synthesis and Selection

Large Reasoning Models (LRMs) have demonstrated remarkable performance on complex reasoning tasks through long Chain-of-Thought (CoT) reasoning. Extending these successes to multimodal reasoning remains challenging due to the increased complexity of integrating diverse input modalities and the scarcity of high-quality long CoT training data. Existing multimodal datasets and CoT synthesis methods still suffer from limited reasoning depth, modality conversion errors, and rigid generation pipelines, hindering model performance and stability. To this end, in this paper, we propose SynSelect, a novel three-stage Synthesis-Selection framework for generating high-quality long CoT data tailored to multimodal reasoning tasks. Specifically, SynSelect first leverages multiple heterogeneous multimodal LRMs to produce diverse candidate CoTs, and then applies both instance and batch level selection to filter high-quality CoTs that can effectively enhance the model's reasoning capabilities. Extensive experiments on multiple multimodal benchmarks demonstrate that models supervised fine-tuned on SynSelect-generated data significantly outperform baselines and achieve further improvements after reinforcement learning post-training. Our results validate SynSelect as an effective approach for advancing multimodal LRMs reasoning capabilities.

  • 3 authors
·
Dec 21, 2025

LLM4Drive: A Survey of Large Language Models for Autonomous Driving

Autonomous driving technology, a catalyst for revolutionizing transportation and urban mobility, has the tend to transition from rule-based systems to data-driven strategies. Traditional module-based systems are constrained by cumulative errors among cascaded modules and inflexible pre-set rules. In contrast, end-to-end autonomous driving systems have the potential to avoid error accumulation due to their fully data-driven training process, although they often lack transparency due to their "black box" nature, complicating the validation and traceability of decisions. Recently, large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers. A natural thought is to utilize these abilities to empower autonomous driving. By combining LLM with foundation vision models, it could open the door to open-world understanding, reasoning, and few-shot learning, which current autonomous driving systems are lacking. In this paper, we systematically review a research line about Large Language Models for Autonomous Driving (LLM4AD). This study evaluates the current state of technological advancements, distinctly outlining the principal challenges and prospective directions for the field. For the convenience of researchers in academia and industry, we provide real-time updates on the latest advances in the field as well as relevant open-source resources via the designated link: https://github.com/Thinklab-SJTU/Awesome-LLM4AD.

  • 4 authors
·
Nov 2, 2023

LTA-thinker: Latent Thought-Augmented Training Framework for Large Language Models on Complex Reasoning

Complex Reasoning in Large Language Models can be dynamically optimized using Test-Time Scaling (TTS) to mitigate Overthinking. Methods such as Coconut, SoftCoT and its variant are effective in continuous latent space inference, the core bottleneck still lies in the efficient generation and utilization of high-quality Latent Thought. Drawing from the theory of SoftCoT++ that a larger variance in the generated Latent Thought distribution more closely approximates the golden truth distribution, we propose a Latent Thought-Augmented Training Framework--LTA-Thinker, which improves distributional variance and enhances reasoning performance from two perspectives. First, LTA-Thinker constructs a Latent Thought generation architecture based on a learnable prior. This architecture aims to increase the variance distribution of generated Latent Thought Vectors in order to simplify the overall structure and raise the performance ceiling. Second, LTA-Thinker introduces a distribution-based directional optimization paradigm that jointly constrains both distribution locality and distribution scale. This mechanism improves information efficiency and computational cost through a multi-objective co-training strategy, which combines standard Supervised Fine-Tuning (SFT) loss with two novel losses: Semantic Alignment Loss, which utilizes KL divergence to ensure that the Latent Thought is highly relevant to the semantics of the question; Reasoning Focus Loss, which utilizes a contrastive learning mechanism to guide the model to focus on the most critical reasoning steps. Experiments show that LTA-thinker achieves state-of-the-art (SOTA) performance among various baselines and demonstrates a higher performance ceiling and better scaling effects.

  • 10 authors
·
Sep 16, 2025

Dialogue Agents 101: A Beginner's Guide to Critical Ingredients for Designing Effective Conversational Systems

Sharing ideas through communication with peers is the primary mode of human interaction. Consequently, extensive research has been conducted in the area of conversational AI, leading to an increase in the availability and diversity of conversational tasks, datasets, and methods. However, with numerous tasks being explored simultaneously, the current landscape of conversational AI becomes fragmented. Therefore, initiating a well-thought-out model for a dialogue agent can pose significant challenges for a practitioner. Towards highlighting the critical ingredients needed for a practitioner to design a dialogue agent from scratch, the current study provides a comprehensive overview of the primary characteristics of a dialogue agent, the supporting tasks, their corresponding open-domain datasets, and the methods used to benchmark these datasets. We observe that different methods have been used to tackle distinct dialogue tasks. However, building separate models for each task is costly and does not leverage the correlation among the several tasks of a dialogue agent. As a result, recent trends suggest a shift towards building unified foundation models. To this end, we propose UNIT, a UNified dIalogue dataseT constructed from conversations of existing datasets for different dialogue tasks capturing the nuances for each of them. We also examine the evaluation strategies used to measure the performance of dialogue agents and highlight the scope for future research in the area of conversational AI.

  • 4 authors
·
Jul 14, 2023

Towards Large Reasoning Models: A Survey of Reinforced Reasoning with Large Language Models

Language has long been conceived as an essential tool for human reasoning. The breakthrough of Large Language Models (LLMs) has sparked significant research interest in leveraging these models to tackle complex reasoning tasks. Researchers have moved beyond simple autoregressive token generation by introducing the concept of "thought" -- a sequence of tokens representing intermediate steps in the reasoning process. This innovative paradigm enables LLMs' to mimic complex human reasoning processes, such as tree search and reflective thinking. Recently, an emerging trend of learning to reason has applied reinforcement learning (RL) to train LLMs to master reasoning processes. This approach enables the automatic generation of high-quality reasoning trajectories through trial-and-error search algorithms, significantly expanding LLMs' reasoning capacity by providing substantially more training data. Furthermore, recent studies demonstrate that encouraging LLMs to "think" with more tokens during test-time inference can further significantly boost reasoning accuracy. Therefore, the train-time and test-time scaling combined to show a new research frontier -- a path toward Large Reasoning Model. The introduction of OpenAI's o1 series marks a significant milestone in this research direction. In this survey, we present a comprehensive review of recent progress in LLM reasoning. We begin by introducing the foundational background of LLMs and then explore the key technical components driving the development of large reasoning models, with a focus on automated data construction, learning-to-reason techniques, and test-time scaling. We also analyze popular open-source projects at building large reasoning models, and conclude with open challenges and future research directions.

  • 20 authors
·
Jan 16, 2025 2

Not All Thoughts are Generated Equal: Efficient LLM Reasoning via Multi-Turn Reinforcement Learning

Compressing long chain-of-thought (CoT) from large language models (LLMs) is an emerging strategy to improve the reasoning efficiency of LLMs. Despite its promising benefits, existing studies equally compress all thoughts within a long CoT, hindering more concise and effective reasoning. To this end, we first investigate the importance of different thoughts by examining their effectiveness and efficiency in contributing to reasoning through automatic long CoT chunking and Monte Carlo rollouts. Building upon the insights, we propose a theoretically bounded metric to jointly measure the effectiveness and efficiency of different thoughts. We then propose LongotimesShort, an efficient reasoning framework that enables two LLMs to collaboratively solve the problem: a long-thought LLM for more effectively generating important thoughts, while a short-thought LLM for efficiently generating remaining thoughts. Specifically, we begin by synthesizing a small amount of cold-start data to fine-tune LLMs for long-thought and short-thought reasoning styles, respectively. Furthermore, we propose a synergizing-oriented multi-turn reinforcement learning, focusing on the model self-evolution and collaboration between long-thought and short-thought LLMs. Experimental results show that our method enables Qwen2.5-7B and Llama3.1-8B to achieve comparable performance compared to DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B, while reducing token length by over 80% across the MATH500, AIME24/25, AMC23, and GPQA Diamond benchmarks. Our data and code are available at https://github.com/yasNing/Long-otimes-Short/.

  • 5 authors
·
May 17, 2025 1

Thought-Path Contrastive Learning via Premise-Oriented Data Augmentation for Logical Reading Comprehension

Logical reading comprehension is a challenging task that entails grasping the underlying semantics of text and applying reasoning to deduce the correct answer. Prior researches have primarily focused on enhancing logical reasoning capabilities through Chain-of-Thought (CoT) or data augmentation. However, previous work constructing chain-of-thought rationales concentrates solely on analyzing correct options, neglecting the incorrect alternatives. Addtionally, earlier efforts on data augmentation by altering contexts rely on rule-based methods, which result in generated contexts that lack diversity and coherence. To address these issues, we propose a Premise-Oriented Data Augmentation (PODA) framework. This framework can generate CoT rationales including analyses for both correct and incorrect options, while constructing diverse and high-quality counterfactual contexts from incorrect candidate options. We integrate summarizing premises and identifying premises for each option into rationales. Subsequently, we employ multi-step prompts with identified premises to construct counterfactual context. To facilitate the model's capabilities to better differentiate the reasoning process associated with each option, we introduce a novel thought-path contrastive learning method that compares reasoning paths between the original and counterfactual samples. Experimental results on three representative LLMs demonstrate that our method can improve the baselines substantially across two challenging logical reasoning benchmarks (ReClor and LogiQA 2.0). The data and code are released at https://github.com/lalalamdbf/TPReasoner.

  • 3 authors
·
Sep 22, 2024

The Consciousness Prior

A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.

  • 1 authors
·
Sep 25, 2017

Chain-of-Thought Hub: A Continuous Effort to Measure Large Language Models' Reasoning Performance

As large language models (LLMs) are continuously being developed, their evaluation becomes increasingly important yet challenging. This work proposes Chain-of-Thought Hub, an open-source evaluation suite on the multi-step reasoning capabilities of large language models. We are interested in this setting for two reasons: (1) from the behavior of GPT and PaLM model family, we observe that complex reasoning is likely to be a key differentiator between weaker and stronger LLMs; (2) we envisage large language models to become the next-generation computational platform and foster an ecosystem of LLM-based new applications, this naturally requires the foundation models to perform complex tasks that often involve the composition of linguistic and logical operations. Our approach is to compile a suite of challenging reasoning benchmarks to track the progress of LLMs. Our current results show that: (1) model scale clearly correlates with reasoning capabilities; (2) As of May 2023, Claude-v1.3 and PaLM-2 are the only two models that are comparable with GPT-4, while open-sourced models still lag behind; (3) LLaMA-65B performs closely to code-davinci-002, indicating that with successful further development such as reinforcement learning from human feedback (RLHF), it has great potential to be close to GPT-3.5-Turbo. Our results also suggest that for the open-source efforts to catch up, the community may focus more on building better base models and exploring RLHF.

  • 6 authors
·
May 26, 2023

AgriCoT: A Chain-of-Thought Benchmark for Evaluating Reasoning in Vision-Language Models for Agriculture

Recent advancements in Vision-Language Models (VLMs) have significantly transformed various industries. In agriculture, these dual-modal capabilities offer promising applications such as precision farming, crop monitoring, pest detection, and environmental sustainability. While several Visual Question Answering (VQA) datasets and benchmarks have been developed to evaluate VLM performance, they often fail to adequately assess the critical reasoning and problem-solving skills required in complex agricultural contexts. To address this gap, we introduce AgriCoT, a VQA dataset that incorporates Chain-of-Thought (CoT) reasoning, specifically designed to evaluate the reasoning capabilities of VLMs. With 4,535 carefully curated samples, AgriCoT offers a comprehensive and robust evaluation of reasoning abilities for VLMs, particularly in zero-shot scenarios, by focusing on their capacity to engage in logical reasoning and effective problem-solving. Our evaluations, conducted with 26 representative VLMs, including both proprietary and open-source models, reveal that while some proprietary models excel at answering questions, there is a notable and significant gap in their reasoning capabilities. This underscores the importance of incorporating CoT for more precise and effective assessments. Our dataset are available at https://huggingface.co/datasets/wenyb/AgriCoT.

  • 15 authors
·
Nov 28, 2025

PromptEnhancer: A Simple Approach to Enhance Text-to-Image Models via Chain-of-Thought Prompt Rewriting

Recent advancements in text-to-image (T2I) diffusion models have demonstrated remarkable capabilities in generating high-fidelity images. However, these models often struggle to faithfully render complex user prompts, particularly in aspects like attribute binding, negation, and compositional relationships. This leads to a significant mismatch between user intent and the generated output. To address this challenge, we introduce PromptEnhancer, a novel and universal prompt rewriting framework that enhances any pretrained T2I model without requiring modifications to its weights. Unlike prior methods that rely on model-specific fine-tuning or implicit reward signals like image-reward scores, our framework decouples the rewriter from the generator. We achieve this by training a Chain-of-Thought (CoT) rewriter through reinforcement learning, guided by a dedicated reward model we term the AlignEvaluator. The AlignEvaluator is trained to provide explicit and fine-grained feedback based on a systematic taxonomy of 24 key points, which are derived from a comprehensive analysis of common T2I failure modes. By optimizing the CoT rewriter to maximize the reward from our AlignEvaluator, our framework learns to generate prompts that are more precisely interpreted by T2I models. Extensive experiments on the HunyuanImage 2.1 model demonstrate that PromptEnhancer significantly improves image-text alignment across a wide range of semantic and compositional challenges. Furthermore, we introduce a new, high-quality human preference benchmark to facilitate future research in this direction.

  • 12 authors
·
Sep 4, 2025

Diminished Diversity-of-Thought in a Standard Large Language Model

We test whether Large Language Models (LLMs) can be used to simulate human participants in social-science studies. To do this, we run replications of 14 studies from the Many Labs 2 replication project with OpenAI's text-davinci-003 model, colloquially known as GPT3.5. Based on our pre-registered analyses, we find that among the eight studies we could analyse, our GPT sample replicated 37.5% of the original results and 37.5% of the Many Labs 2 results. However, we were unable to analyse the remaining six studies due to an unexpected phenomenon we call the "correct answer" effect. Different runs of GPT3.5 answered nuanced questions probing political orientation, economic preference, judgement, and moral philosophy with zero or near-zero variation in responses: with the supposedly "correct answer." In one exploratory follow-up study, we found that a "correct answer" was robust to changing the demographic details that precede the prompt. In another, we found that most but not all "correct answers" were robust to changing the order of answer choices. One of our most striking findings occurred in our replication of the Moral Foundations Theory survey results, where we found GPT3.5 identifying as a political conservative in 99.6% of the cases, and as a liberal in 99.3% of the cases in the reverse-order condition. However, both self-reported 'GPT conservatives' and 'GPT liberals' showed right-leaning moral foundations. Our results cast doubts on the validity of using LLMs as a general replacement for human participants in the social sciences. Our results also raise concerns that a hypothetical AI-led future may be subject to a diminished diversity-of-thought.

  • 3 authors
·
Feb 13, 2023

ReFocus: Visual Editing as a Chain of Thought for Structured Image Understanding

Structured image understanding, such as interpreting tables and charts, requires strategically refocusing across various structures and texts within an image, forming a reasoning sequence to arrive at the final answer. However, current multimodal large language models (LLMs) lack this multihop selective attention capability. In this work, we introduce ReFocus, a simple yet effective framework that equips multimodal LLMs with the ability to generate "visual thoughts" by performing visual editing on the input image through code, shifting and refining their visual focuses. Specifically, ReFocus enables multimodal LLMs to generate Python codes to call tools and modify the input image, sequentially drawing boxes, highlighting sections, and masking out areas, thereby enhancing the visual reasoning process. We experiment upon a wide range of structured image understanding tasks involving tables and charts. ReFocus largely improves performance on all tasks over GPT-4o without visual editing, yielding an average gain of 11.0% on table tasks and 6.8% on chart tasks. We present an in-depth analysis of the effects of different visual edits, and reasons why ReFocus can improve the performance without introducing additional information. Further, we collect a 14k training set using ReFocus, and prove that such visual chain-of-thought with intermediate information offers a better supervision than standard VQA data, reaching a 8.0% average gain over the same model trained with QA pairs and 2.6% over CoT.

  • 9 authors
·
Jan 9, 2025 2

Visual Programmability: A Guide for Code-as-Thought in Chart Understanding

Chart understanding presents a critical test to the reasoning capabilities of Vision-Language Models (VLMs). Prior approaches face critical limitations: some rely on external tools, making them brittle and constrained by a predefined toolkit, while others fine-tune specialist models that often adopt a single reasoning strategy, such as text-based chain-of-thought (CoT). The intermediate steps of text-based reasoning are difficult to verify, which complicates the use of reinforcement-learning signals that reward factual accuracy. To address this, we propose a Code-as-Thought (CaT) approach to represent the visual information of a chart in a verifiable, symbolic format. Our key insight is that this strategy must be adaptive: a fixed, code-only implementation consistently fails on complex charts where symbolic representation is unsuitable. This finding leads us to introduce Visual Programmability: a learnable property that determines if a chart-question pair is better solved with code or direct visual analysis. We implement this concept in an adaptive framework where a VLM learns to choose between the CaT pathway and a direct visual reasoning pathway. The selection policy of the model is trained with reinforcement learning using a novel dual-reward system. This system combines a data-accuracy reward to ground the model in facts and prevent numerical hallucination, with a decision reward that teaches the model when to use each strategy, preventing it from defaulting to a single reasoning mode. Experiments demonstrate strong and robust performance across diverse chart-understanding benchmarks. Our work shows that VLMs can be taught not only to reason but also how to reason, dynamically selecting the optimal reasoning pathway for each task.

  • 9 authors
·
Sep 11, 2025 2

Training Chain-of-Thought via Latent-Variable Inference

Large language models (LLMs) solve problems more accurately and interpretably when instructed to work out the answer step by step using a ``chain-of-thought'' (CoT) prompt. One can also improve LLMs' performance on a specific task by supervised fine-tuning, i.e., by using gradient ascent on some tunable parameters to maximize the average log-likelihood of correct answers from a labeled training set. Naively combining CoT with supervised tuning requires supervision not just of the correct answers, but also of detailed rationales that lead to those answers; these rationales are expensive to produce by hand. Instead, we propose a fine-tuning strategy that tries to maximize the marginal log-likelihood of generating a correct answer using CoT prompting, approximately averaging over all possible rationales. The core challenge is sampling from the posterior over rationales conditioned on the correct answer; we address it using a simple Markov-chain Monte Carlo (MCMC) expectation-maximization (EM) algorithm inspired by the self-taught reasoner (STaR), memoized wake-sleep, Markovian score climbing, and persistent contrastive divergence. This algorithm also admits a novel control-variate technique that drives the variance of our gradient estimates to zero as the model improves. Applying our technique to GSM8K and the tasks in BIG-Bench Hard, we find that this MCMC-EM fine-tuning technique typically improves the model's accuracy on held-out examples more than STaR or prompt-tuning with or without CoT.

  • 10 authors
·
Nov 28, 2023

Let's Think Outside the Box: Exploring Leap-of-Thought in Large Language Models with Creative Humor Generation

Chain-of-Thought (CoT) guides large language models (LLMs) to reason step-by-step, and can motivate their logical reasoning ability. While effective for logical tasks, CoT is not conducive to creative problem-solving which often requires out-of-box thoughts and is crucial for innovation advancements. In this paper, we explore the Leap-of-Thought (LoT) abilities within LLMs -- a non-sequential, creative paradigm involving strong associations and knowledge leaps. To this end, we study LLMs on the popular Oogiri game which needs participants to have good creativity and strong associative thinking for responding unexpectedly and humorously to the given image, text, or both, and thus is suitable for LoT study. Then to investigate LLMs' LoT ability in the Oogiri game, we first build a multimodal and multilingual Oogiri-GO dataset which contains over 130,000 samples from the Oogiri game, and observe the insufficient LoT ability or failures of most existing LLMs on the Oogiri game. Accordingly, we introduce a creative Leap-of-Thought (CLoT) paradigm to improve LLM's LoT ability. CLoT first formulates the Oogiri-GO dataset into LoT-oriented instruction tuning data to train pretrained LLM for achieving certain LoT humor generation and discrimination abilities. Then CLoT designs an explorative self-refinement that encourages the LLM to generate more creative LoT data via exploring parallels between seemingly unrelated concepts and selects high-quality data to train itself for self-refinement. CLoT not only excels in humor generation in the Oogiri game but also boosts creative abilities in various tasks like cloud guessing game and divergent association task. These findings advance our understanding and offer a pathway to improve LLMs' creative capacities for innovative applications across domains. The dataset, code, and models will be released online. https://zhongshsh.github.io/CLoT/.

  • 7 authors
·
Dec 4, 2023

Thought Communication in Multiagent Collaboration

Natural language has long enabled human cooperation, but its lossy, ambiguous, and indirect nature limits the potential of collective intelligence. While machines are not subject to these constraints, most LLM-based multi-agent systems still rely solely on natural language, exchanging tokens or their embeddings. To go beyond language, we introduce a new paradigm, thought communication, which enables agents to interact directly mind-to-mind, akin to telepathy. To uncover these latent thoughts in a principled way, we formalize the process as a general latent variable model, where agent states are generated by an unknown function of underlying thoughts. We prove that, in a nonparametric setting without auxiliary information, both shared and private latent thoughts between any pair of agents can be identified. Moreover, the global structure of thought sharing, including which agents share which thoughts and how these relationships are structured, can also be recovered with theoretical guarantees. Guided by the established theory, we develop a framework that extracts latent thoughts from all agents prior to communication and assigns each agent the relevant thoughts, along with their sharing patterns. This paradigm naturally extends beyond LLMs to all modalities, as most observational data arise from hidden generative processes. Experiments on both synthetic and real-world benchmarks validate the theory and demonstrate the collaborative advantages of thought communication. We hope this work illuminates the potential of leveraging the hidden world, as many challenges remain unsolvable through surface-level observation alone, regardless of compute or data scale.

  • 7 authors
·
Oct 23, 2025 3

Answer-Consistent Chain-of-thought Reinforcement Learning For Multi-modal Large Langauge Models

Recent advances in large language models (LLMs) have demonstrated that reinforcement learning with verifiable rewards (RLVR) can significantly enhance reasoning abilities by directly optimizing correctness, rather than relying solely on supervised imitation. This paradigm has been extended to multimodal LLMs for complex video and image understanding tasks. However, while outcome-driven RL improves answer accuracy, it can inadvertently decouple the reasoning chain from the final answer, leading to situations where models produce inconsistency between the reasoning trace and final answer. In our experiments on multiple-choice visual question-answering tasks, the standard GRPO method yields only 79.7\% consistency on MMVU between the reasoning steps and the chosen answers, indicating frequent mismatches between answers and reasoning. To this end, we propose Answer-Consistent Reinforcement Learning (ACRE) that modifies the GRPO algorithm with an auxiliary consistency check. After the model generates a chain of thought and an initial answer for a given question, we shuffle the answer options and prompt the model again with the same reasoning trace to predict a second answer. We design a consistency-verification reward that grants a high reward only if both the original and the post-shuffle answers agree and are correct; otherwise, a lower reward is assigned accordingly. This mechanism penalizes reasoning-answer misalignment and discourages the model from relying on spurious patterns, such as option ordering biases. We evaluate ACRE on challenging Video Reasoning benchmarks and multimodal math reasoning benchmarks, achieving an average 2.2\% and 1.5\% improvement for Video Reasoning and Math Reasoning tasks over the GRPO baseline.

  • 7 authors
·
Oct 11, 2025

Knowledge Editing through Chain-of-Thought

Large Language Models (LLMs) have demonstrated exceptional capabilities across a wide range of natural language processing (NLP) tasks. However, keeping these models up-to-date with evolving world knowledge remains a significant challenge due to the high costs of frequent retraining. To address this challenge, knowledge editing techniques have emerged to update LLMs with new information without rebuilding the model from scratch. Among these, the in-context editing paradigm stands out for its effectiveness in integrating new knowledge while preserving the model's original capabilities. Despite its potential, existing in-context knowledge editing methods are often task-specific, focusing primarily on multi-hop QA tasks using structured knowledge triples. Moreover, their reliance on few-shot prompting for task decomposition makes them unstable and less effective in generalizing across diverse tasks. In response to these limitations, we propose EditCoT, a novel knowledge editing framework that flexibly and efficiently updates LLMs across various tasks without retraining. EditCoT works by generating a chain-of-thought (CoT) for a given input and then iteratively refining this CoT process using a CoT editor based on updated knowledge. We evaluate EditCoT across a diverse range of benchmarks, covering multiple languages and tasks. The results demonstrate that our approach achieves state-of-the-art performance while offering superior generalization, effectiveness, and stability compared to existing methods, marking a significant advancement in the field of knowledge updating. Code and data are available at: https://github.com/bebr2/EditCoT.

  • 4 authors
·
Dec 23, 2024

A Trembling House of Cards? Mapping Adversarial Attacks against Language Agents

Language agents powered by large language models (LLMs) have seen exploding development. Their capability of using language as a vehicle for thought and communication lends an incredible level of flexibility and versatility. People have quickly capitalized on this capability to connect LLMs to a wide range of external components and environments: databases, tools, the Internet, robotic embodiment, etc. Many believe an unprecedentedly powerful automation technology is emerging. However, new automation technologies come with new safety risks, especially for intricate systems like language agents. There is a surprisingly large gap between the speed and scale of their development and deployment and our understanding of their safety risks. Are we building a house of cards? In this position paper, we present the first systematic effort in mapping adversarial attacks against language agents. We first present a unified conceptual framework for agents with three major components: Perception, Brain, and Action. Under this framework, we present a comprehensive discussion and propose 12 potential attack scenarios against different components of an agent, covering different attack strategies (e.g., input manipulation, adversarial demonstrations, jailbreaking, backdoors). We also draw connections to successful attack strategies previously applied to LLMs. We emphasize the urgency to gain a thorough understanding of language agent risks before their widespread deployment.

  • 6 authors
·
Feb 15, 2024

C-Drag: Chain-of-Thought Driven Motion Controller for Video Generation

Trajectory-based motion control has emerged as an intuitive and efficient approach for controllable video generation. However, the existing trajectory-based approaches are usually limited to only generating the motion trajectory of the controlled object and ignoring the dynamic interactions between the controlled object and its surroundings. To address this limitation, we propose a Chain-of-Thought-based motion controller for controllable video generation, named C-Drag. Instead of directly generating the motion of some objects, our C-Drag first performs object perception and then reasons the dynamic interactions between different objects according to the given motion control of the objects. Specifically, our method includes an object perception module and a Chain-of-Thought-based motion reasoning module. The object perception module employs visual language models to capture the position and category information of various objects within the image. The Chain-of-Thought-based motion reasoning module takes this information as input and conducts a stage-wise reasoning process to generate motion trajectories for each of the affected objects, which are subsequently fed to the diffusion model for video synthesis. Furthermore, we introduce a new video object interaction (VOI) dataset to evaluate the generation quality of motion controlled video generation methods. Our VOI dataset contains three typical types of interactions and provides the motion trajectories of objects that can be used for accurate performance evaluation. Experimental results show that C-Drag achieves promising performance across multiple metrics, excelling in object motion control. Our benchmark, codes, and models will be available at https://github.com/WesLee88524/C-Drag-Official-Repo.

  • 7 authors
·
Feb 27, 2025

GlimpRouter: Efficient Collaborative Inference by Glimpsing One Token of Thoughts

Large Reasoning Models (LRMs) achieve remarkable performance by explicitly generating multi-step chains of thought, but this capability incurs substantial inference latency and computational cost. Collaborative inference offers a promising solution by selectively allocating work between lightweight and large models, yet a fundamental challenge remains: determining when a reasoning step requires the capacity of a large model or the efficiency of a small model. Existing routing strategies either rely on local token probabilities or post-hoc verification, introducing significant inference overhead. In this work, we propose a novel perspective on step-wise collaboration: the difficulty of a reasoning step can be inferred from its very first token. Inspired by the "Aha Moment" phenomenon in LRMs, we show that the entropy of the initial token serves as a strong predictor of step difficulty. Building on this insight, we introduce GlimpRouter, a training-free step-wise collaboration framework. GlimpRouter employs a lightweight model to generate only the first token of each reasoning step and routes the step to a larger model only when the initial token entropy exceeds a threshold. Experiments on multiple benchmarks demonstrate that our approach significantly reduces inference latency while preserving accuracy. For instance, GlimpRouter attains a substantial 10.7% improvement in accuracy while reducing inference latency by 25.9% compared to a standalone large model on AIME25. These results suggest a simple yet effective mechanism for reasoning: allocating computation based on a glimpse of thought rather than full-step evaluation.

SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers

Seeking answers to questions within long scientific research articles is a crucial area of study that aids readers in quickly addressing their inquiries. However, existing question-answering (QA) datasets based on scientific papers are limited in scale and focus solely on textual content. To address this limitation, we introduce SPIQA (Scientific Paper Image Question Answering), the first large-scale QA dataset specifically designed to interpret complex figures and tables within the context of scientific research articles across various domains of computer science. Leveraging the breadth of expertise and ability of multimodal large language models (MLLMs) to understand figures, we employ automatic and manual curation to create the dataset. We craft an information-seeking task involving multiple images that cover a wide variety of plots, charts, tables, schematic diagrams, and result visualizations. SPIQA comprises 270K questions divided into training, validation, and three different evaluation splits. Through extensive experiments with 12 prominent foundational models, we evaluate the ability of current multimodal systems to comprehend the nuanced aspects of research articles. Additionally, we propose a Chain-of-Thought (CoT) evaluation strategy with in-context retrieval that allows fine-grained, step-by-step assessment and improves model performance. We further explore the upper bounds of performance enhancement with additional textual information, highlighting its promising potential for future research and the dataset's impact on revolutionizing how we interact with scientific literature.

  • 3 authors
·
Jul 12, 2024 3

Privacy-Preserving LLM Interaction with Socratic Chain-of-Thought Reasoning and Homomorphically Encrypted Vector Databases

Large language models (LLMs) are increasingly used as personal agents, accessing sensitive user data such as calendars, emails, and medical records. Users currently face a trade-off: They can send private records, many of which are stored in remote databases, to powerful but untrusted LLM providers, increasing their exposure risk. Alternatively, they can run less powerful models locally on trusted devices. We bridge this gap. Our Socratic Chain-of-Thought Reasoning first sends a generic, non-private user query to a powerful, untrusted LLM, which generates a Chain-of-Thought (CoT) prompt and detailed sub-queries without accessing user data. Next, we embed these sub-queries and perform encrypted sub-second semantic search using our Homomorphically Encrypted Vector Database across one million entries of a single user's private data. This represents a realistic scale of personal documents, emails, and records accumulated over years of digital activity. Finally, we feed the CoT prompt and the decrypted records to a local language model and generate the final response. On the LoCoMo long-context QA benchmark, our hybrid framework, combining GPT-4o with a local Llama-3.2-1B model, outperforms using GPT-4o alone by up to 7.1 percentage points. This demonstrates a first step toward systems where tasks are decomposed and split between untrusted strong LLMs and weak local ones, preserving user privacy.

  • 7 authors
·
Jun 19, 2025

Analyzable Chain-of-Musical-Thought Prompting for High-Fidelity Music Generation

Autoregressive (AR) models have demonstrated impressive capabilities in generating high-fidelity music. However, the conventional next-token prediction paradigm in AR models does not align with the human creative process in music composition, potentially compromising the musicality of generated samples. To overcome this limitation, we introduce MusiCoT, a novel chain-of-thought (CoT) prompting technique tailored for music generation. MusiCoT empowers the AR model to first outline an overall music structure before generating audio tokens, thereby enhancing the coherence and creativity of the resulting compositions. By leveraging the contrastive language-audio pretraining (CLAP) model, we establish a chain of "musical thoughts", making MusiCoT scalable and independent of human-labeled data, in contrast to conventional CoT methods. Moreover, MusiCoT allows for in-depth analysis of music structure, such as instrumental arrangements, and supports music referencing -- accepting variable-length audio inputs as optional style references. This innovative approach effectively addresses copying issues, positioning MusiCoT as a vital practical method for music prompting. Our experimental results indicate that MusiCoT consistently achieves superior performance across both objective and subjective metrics, producing music quality that rivals state-of-the-art generation models. Our samples are available at https://MusiCoT.github.io/.

  • 17 authors
·
Mar 25, 2025

Whiteboard-of-Thought: Thinking Step-by-Step Across Modalities

When presented with questions involving visual thinking, humans naturally switch reasoning modalities, often forming mental images or drawing visual aids. Large language models have shown promising results in arithmetic and symbolic reasoning by expressing intermediate reasoning in text as a chain of thought, yet struggle to extend this capability to answer text queries that are easily solved by visual reasoning, even with extensive multimodal pretraining. We introduce a simple method, whiteboard-of-thought prompting, to unlock the visual reasoning capabilities of multimodal large language models across modalities. Whiteboard-of-thought prompting provides multimodal large language models with a metaphorical `whiteboard' to draw out reasoning steps as images, then returns these images back to the model for further processing. We find this can be accomplished with no demonstrations or specialized modules, instead leveraging models' existing ability to write code with libraries such as Matplotlib and Turtle. This simple approach shows state-of-the-art results on four difficult natural language tasks that involve visual and spatial reasoning. We identify multiple settings where GPT-4o using chain-of-thought fails dramatically, including more than one where it achieves 0% accuracy, while whiteboard-of-thought enables up to 92% accuracy in these same settings. We present a detailed exploration of where the technique succeeds as well as its sources of error.

  • 3 authors
·
Jun 20, 2024 1

MMAR: A Challenging Benchmark for Deep Reasoning in Speech, Audio, Music, and Their Mix

We introduce MMAR, a new benchmark designed to evaluate the deep reasoning capabilities of Audio-Language Models (ALMs) across massive multi-disciplinary tasks. MMAR comprises 1,000 meticulously curated audio-question-answer triplets, collected from real-world internet videos and refined through iterative error corrections and quality checks to ensure high quality. Unlike existing benchmarks that are limited to specific domains of sound, music, or speech, MMAR extends them to a broad spectrum of real-world audio scenarios, including mixed-modality combinations of sound, music, and speech. Each question in MMAR is hierarchically categorized across four reasoning layers: Signal, Perception, Semantic, and Cultural, with additional sub-categories within each layer to reflect task diversity and complexity. To further foster research in this area, we annotate every question with a Chain-of-Thought (CoT) rationale to promote future advancements in audio reasoning. Each item in the benchmark demands multi-step deep reasoning beyond surface-level understanding. Moreover, a part of the questions requires graduate-level perceptual and domain-specific knowledge, elevating the benchmark's difficulty and depth. We evaluate MMAR using a broad set of models, including Large Audio-Language Models (LALMs), Large Audio Reasoning Models (LARMs), Omni Language Models (OLMs), Large Language Models (LLMs), and Large Reasoning Models (LRMs), with audio caption inputs. The performance of these models on MMAR highlights the benchmark's challenging nature, and our analysis further reveals critical limitations of understanding and reasoning capabilities among current models. We hope MMAR will serve as a catalyst for future advances in this important but little-explored area.

  • 34 authors
·
May 19, 2025

Enhancing Reasoning Capabilities of Large Language Models: A Graph-Based Verification Approach

Large Language Models (LLMs) have showcased impressive reasoning capabilities, particularly when guided by specifically designed prompts in complex reasoning tasks such as math word problems. These models typically solve tasks using a chain-of-thought approach, which not only bolsters their reasoning abilities but also provides valuable insights into their problem-solving process. However, there is still significant room for enhancing the reasoning abilities of LLMs. Some studies suggest that the integration of an LLM output verifier can boost reasoning accuracy without necessitating additional model training. In this paper, we follow these studies and introduce a novel graph-based method to further augment the reasoning capabilities of LLMs. We posit that multiple solutions to a reasoning task, generated by an LLM, can be represented as a reasoning graph due to the logical connections between intermediate steps from different reasoning paths. Therefore, we propose the Reasoning Graph Verifier (RGV) to analyze and verify the solutions generated by LLMs. By evaluating these graphs, models can yield more accurate and reliable results.Our experimental results show that our graph-based verification method not only significantly enhances the reasoning abilities of LLMs but also outperforms existing verifier methods in terms of improving these models' reasoning performance.

  • 1 authors
·
Aug 17, 2023

Thinking Like an Expert:Multimodal Hypergraph-of-Thought (HoT) Reasoning to boost Foundation Modals

Reasoning ability is one of the most crucial capabilities of a foundation model, signifying its capacity to address complex reasoning tasks. Chain-of-Thought (CoT) technique is widely regarded as one of the effective methods for enhancing the reasoning ability of foundation models and has garnered significant attention. However, the reasoning process of CoT is linear, step-by-step, similar to personal logical reasoning, suitable for solving general and slightly complicated problems. On the contrary, the thinking pattern of an expert owns two prominent characteristics that cannot be handled appropriately in CoT, i.e., high-order multi-hop reasoning and multimodal comparative judgement. Therefore, the core motivation of this paper is transcending CoT to construct a reasoning paradigm that can think like an expert. The hyperedge of a hypergraph could connect various vertices, making it naturally suitable for modelling high-order relationships. Inspired by this, this paper innovatively proposes a multimodal Hypergraph-of-Thought (HoT) reasoning paradigm, which enables the foundation models to possess the expert-level ability of high-order multi-hop reasoning and multimodal comparative judgement. Specifically, a textual hypergraph-of-thought is constructed utilizing triple as the primary thought to model higher-order relationships, and a hyperedge-of-thought is generated through multi-hop walking paths to achieve multi-hop inference. Furthermore, we devise a visual hypergraph-of-thought to interact with the textual hypergraph-of-thought via Cross-modal Co-Attention Graph Learning for multimodal comparative verification. Experimentations on the ScienceQA benchmark demonstrate the proposed HoT-based T5 outperforms CoT-based GPT3.5 and chatGPT, which is on par with CoT-based GPT4 with a lower model size.

  • 9 authors
·
Aug 11, 2023

Controllable Navigation Instruction Generation with Chain of Thought Prompting

Instruction generation is a vital and multidisciplinary research area with broad applications. Existing instruction generation models are limited to generating instructions in a single style from a particular dataset, and the style and content of generated instructions cannot be controlled. Moreover, most existing instruction generation methods also disregard the spatial modeling of the navigation environment. Leveraging the capabilities of Large Language Models (LLMs), we propose C-Instructor, which utilizes the chain-of-thought-style prompt for style-controllable and content-controllable instruction generation. Firstly, we propose a Chain of Thought with Landmarks (CoTL) mechanism, which guides the LLM to identify key landmarks and then generate complete instructions. CoTL renders generated instructions more accessible to follow and offers greater controllability over the manipulation of landmark objects. Furthermore, we present a Spatial Topology Modeling Task to facilitate the understanding of the spatial structure of the environment. Finally, we introduce a Style-Mixed Training policy, harnessing the prior knowledge of LLMs to enable style control for instruction generation based on different prompts within a single model instance. Extensive experiments demonstrate that instructions generated by C-Instructor outperform those generated by previous methods in text metrics, navigation guidance evaluation, and user studies.

  • 7 authors
·
Jul 10, 2024

From Word Models to World Models: Translating from Natural Language to the Probabilistic Language of Thought

How does language inform our downstream thinking? In particular, how do humans make meaning from language -- and how can we leverage a theory of linguistic meaning to build machines that think in more human-like ways? In this paper, we propose rational meaning construction, a computational framework for language-informed thinking that combines neural models of language with probabilistic models for rational inference. We frame linguistic meaning as a context-sensitive mapping from natural language into a probabilistic language of thought (PLoT) -- a general-purpose symbolic substrate for probabilistic, generative world modeling. Our architecture integrates two powerful computational tools that have not previously come together: we model thinking with probabilistic programs, an expressive representation for flexible commonsense reasoning; and we model meaning construction with large language models (LLMs), which support broad-coverage translation from natural language utterances to code expressions in a probabilistic programming language. We illustrate our framework in action through examples covering four core domains from cognitive science: probabilistic reasoning, logical and relational reasoning, visual and physical reasoning, and social reasoning about agents and their plans. In each, we show that LLMs can generate context-sensitive translations that capture pragmatically-appropriate linguistic meanings, while Bayesian inference with the generated programs supports coherent and robust commonsense reasoning. We extend our framework to integrate cognitively-motivated symbolic modules to provide a unified commonsense thinking interface from language. Finally, we explore how language can drive the construction of world models themselves.

  • 7 authors
·
Jun 22, 2023 1

Reasoning to Learn from Latent Thoughts

Compute scaling for language model (LM) pretraining has outpaced the growth of human-written texts, leading to concerns that data will become the bottleneck to LM scaling. To continue scaling pretraining in this data-constrained regime, we propose that explicitly modeling and inferring the latent thoughts that underlie the text generation process can significantly improve pretraining data efficiency. Intuitively, our approach views web text as the compressed final outcome of a verbose human thought process and that the latent thoughts contain important contextual knowledge and reasoning steps that are critical to data-efficient learning. We empirically demonstrate the effectiveness of our approach through data-constrained continued pretraining for math. We first show that synthetic data approaches to inferring latent thoughts significantly improve data efficiency, outperforming training on the same amount of raw data (5.7\% rightarrow 25.4\% on MATH). Furthermore, we demonstrate latent thought inference without a strong teacher, where an LM bootstraps its own performance by using an EM algorithm to iteratively improve the capability of the trained LM and the quality of thought-augmented pretraining data. We show that a 1B LM can bootstrap its performance across at least three iterations and significantly outperform baselines trained on raw data, with increasing gains from additional inference compute when performing the E-step. The gains from inference scaling and EM iterations suggest new opportunities for scaling data-constrained pretraining.

  • 4 authors
·
Mar 24, 2025 1

Language of Thought Shapes Output Diversity in Large Language Models

Output diversity is crucial for Large Language Models as it underpins pluralism and creativity. In this work, we reveal that controlling the language used during model thinking-the language of thought-provides a novel and structural source of output diversity. Our preliminary study shows that different thinking languages occupy distinct regions in a model's thinking space. Based on this observation, we study two repeated sampling strategies under multilingual thinking-Single-Language Sampling and Mixed-Language Sampling-and conduct diversity evaluation on outputs that are controlled to be in English, regardless of the thinking language used. Across extensive experiments, we demonstrate that switching the thinking language from English to non-English languages consistently increases output diversity, with a clear and consistent positive correlation such that languages farther from English in the thinking space yield larger gains. We further show that aggregating samples across multiple thinking languages yields additional improvements through compositional effects, and that scaling sampling with linguistic heterogeneity expands the model's diversity ceiling. Finally, we show that these findings translate into practical benefits in pluralistic alignment scenarios, leading to broader coverage of cultural knowledge and value orientations in LLM outputs. Our code is publicly available at https://github.com/iNLP-Lab/Multilingual-LoT-Diversity.

OpenHA: A Series of Open-Source Hierarchical Agentic Models in Minecraft

The choice of action spaces is a critical yet unresolved challenge in developing capable, end-to-end trainable agents. This paper first presents a large-scale, systematic comparison of prominent abstracted action spaces and tokenizers for Vision-Language-Action (VLA) or hierarchical agent models in the open-ended Minecraft. Our analysis reveals that no single action space is universally optimal; instead, the most effective abstraction is highly task-dependent, creating a dilemma for building generalist agents. To resolve this, we introduce Chain of Action (CoA), a novel framework that unifies high-level planning and low-level control within a single, monolithic VLA model. CoA treats an abstracted action not as a command for a separate policy, but as an intermediate reasoning step--akin to a chain of thought--that guides the generation of the final, executable action. Furthermore, we demonstrate that an All-in-One agent trained on a diverse mixture of action spaces using the CoA paradigm learns a more robust and generalizable policy. This unified agent achieves a new state-of-the-art, improving the overall task success rate over strong, specialized baselines. To foster reproducible research, we release the OpenHA (Open Hierarchical Agents) suite, which includes our comprehensive benchmark of over 800 distinct tasks, curated datasets, source code, and all pretrained model checkpoints at https://github.com/CraftJarvis/OpenHA

  • 7 authors
·
Sep 12, 2025 1

SmartAgent: Chain-of-User-Thought for Embodied Personalized Agent in Cyber World

Recent advances in embodied agents with multimodal perception and reasoning capabilities based on large vision-language models (LVLMs), excel in autonomously interacting either real or cyber worlds, helping people make intelligent decisions in complex environments. However, the current works are normally optimized by golden action trajectories or ideal task-oriented solutions toward a definitive goal. This paradigm considers limited user-oriented factors, which could be the reason for their performance reduction in a wide range of personal assistant applications. To address this, we propose Chain-of-User-Thought (COUT), a novel embodied reasoning paradigm that takes a chain of thought from basic action thinking to explicit and implicit personalized preference thought to incorporate personalized factors into autonomous agent learning. To target COUT, we introduce SmartAgent, an agent framework perceiving cyber environments and reasoning personalized requirements as 1) interacting with GUI to access an item pool, 2) generating users' explicit requirements implied by previous actions, and 3) recommending items to fulfill users' implicit requirements. To demonstrate SmartAgent's capabilities, we also create a brand-new dataset SmartSpot that offers a full-stage personalized action-involved environment. To our best knowledge, our work is the first to formulate the COUT process, serving as a preliminary attempt towards embodied personalized agent learning. Our extensive experiments on SmartSpot illuminate SmartAgent's functionality among a series of embodied and personalized sub-tasks. We will release code and data upon paper notification at https://github.com/tsinghua-fib-lab/SmartAgent.

  • 5 authors
·
Dec 10, 2024

Syzygy of Thoughts: Improving LLM CoT with the Minimal Free Resolution

Chain-of-Thought (CoT) prompting enhances the reasoning of large language models (LLMs) by decomposing problems into sequential steps, mimicking human logic and reducing errors. However, complex tasks with vast solution spaces and vague constraints often exceed the capacity of a single reasoning chain. Inspired by Minimal Free Resolution (MFR) in commutative algebra and algebraic geometry, we propose Syzygy of Thoughts (SoT)-a novel framework that extends CoT by introducing auxiliary, interrelated reasoning paths. SoT captures deeper logical dependencies, enabling more robust and structured problem-solving. MFR decomposes a module into a sequence of free modules with minimal rank, providing a structured analytical approach to complex systems. This method introduces the concepts of "Module", "Betti numbers","Freeness", "Mapping", "Exactness" and "Minimality", enabling the systematic decomposition of the original complex problem into logically complete minimal subproblems while preserving key problem features and reducing reasoning length. We tested SoT across diverse datasets (e.g., GSM8K, MATH) and models (e.g., GPT-4o-mini, Qwen2.5), achieving inference accuracy that matches or surpasses mainstream CoTs standards. Additionally, by aligning the sampling process with algebraic constraints, our approach enhances the scalability of inference time in LLMs, ensuring both transparent reasoning and high performance. Our code will be publicly available at https://github.com/dlMARiA/Syzygy-of-thoughts.

  • 10 authors
·
Apr 13, 2025 2

Avalon's Game of Thoughts: Battle Against Deception through Recursive Contemplation

Recent breakthroughs in large language models (LLMs) have brought remarkable success in the field of LLM-as-Agent. Nevertheless, a prevalent assumption is that the information processed by LLMs is consistently honest, neglecting the pervasive deceptive or misleading information in human society and AI-generated content. This oversight makes LLMs susceptible to malicious manipulations, potentially resulting in detrimental outcomes. This study utilizes the intricate Avalon game as a testbed to explore LLMs' potential in deceptive environments. Avalon, full of misinformation and requiring sophisticated logic, manifests as a "Game-of-Thoughts". Inspired by the efficacy of humans' recursive thinking and perspective-taking in the Avalon game, we introduce a novel framework, Recursive Contemplation (ReCon), to enhance LLMs' ability to identify and counteract deceptive information. ReCon combines formulation and refinement contemplation processes; formulation contemplation produces initial thoughts and speech, while refinement contemplation further polishes them. Additionally, we incorporate first-order and second-order perspective transitions into these processes respectively. Specifically, the first-order allows an LLM agent to infer others' mental states, and the second-order involves understanding how others perceive the agent's mental state. After integrating ReCon with different LLMs, extensive experiment results from the Avalon game indicate its efficacy in aiding LLMs to discern and maneuver around deceptive information without extra fine-tuning and data. Finally, we offer a possible explanation for the efficacy of ReCon and explore the current limitations of LLMs in terms of safety, reasoning, speaking style, and format, potentially furnishing insights for subsequent research.

  • 10 authors
·
Oct 2, 2023

Reasoning Models Generate Societies of Thought

Large language models have achieved remarkable capabilities across domains, yet mechanisms underlying sophisticated reasoning remain elusive. Recent reasoning models outperform comparable instruction-tuned models on complex cognitive tasks, attributed to extended computation through longer chains of thought. Here we show that enhanced reasoning emerges not from extended computation alone, but from simulating multi-agent-like interactions -- a society of thought -- which enables diversification and debate among internal cognitive perspectives characterized by distinct personality traits and domain expertise. Through quantitative analysis and mechanistic interpretability methods applied to reasoning traces, we find that reasoning models like DeepSeek-R1 and QwQ-32B exhibit much greater perspective diversity than instruction-tuned models, activating broader conflict between heterogeneous personality- and expertise-related features during reasoning. This multi-agent structure manifests in conversational behaviors, including question-answering, perspective shifts, and the reconciliation of conflicting views, and in socio-emotional roles that characterize sharp back-and-forth conversations, together accounting for the accuracy advantage in reasoning tasks. Controlled reinforcement learning experiments reveal that base models increase conversational behaviors when rewarded solely for reasoning accuracy, and fine-tuning models with conversational scaffolding accelerates reasoning improvement over base models. These findings indicate that the social organization of thought enables effective exploration of solution spaces. We suggest that reasoning models establish a computational parallel to collective intelligence in human groups, where diversity enables superior problem-solving when systematically structured, which suggests new opportunities for agent organization to harness the wisdom of crowds.

  • 5 authors
·
Jan 15 3

Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models

Logical reasoning is fundamental for humans yet presents a substantial challenge in the domain of Artificial Intelligence. Initially, researchers used Knowledge Representation and Reasoning (KR) systems that did not scale and required non trivial manual effort. Recently, the emergence of large language models (LLMs) has demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems. Consequently, there is a growing interest in using LLMs for logical reasoning via natural language. This work strives to understand the proficiency of LLMs in logical reasoning by offering a brief review of the latest progress in this area; with a focus on the logical reasoning datasets, tasks, and the methods adopted to utilize LLMs for reasoning. To offer a thorough analysis, we have compiled a benchmark titled LogiGLUE. This includes 24 varied datasets encompassing deductive, abductive, and inductive reasoning. We have standardized these datasets into Seq2Seq tasks to facilitate straightforward training and evaluation for future research. Utilizing LogiGLUE as a foundation, we have trained an instruction fine tuned language model, resulting in LogiT5. We study single task training, multi task training, and a chain of thought knowledge distillation fine tuning technique to assess the performance of model across the different logical reasoning categories. By this comprehensive process, we aim to shed light on the capabilities and potential pathways for enhancing logical reasoning proficiency in LLMs, paving the way for more advanced and nuanced developments in this critical field.

  • 8 authors
·
Oct 1, 2023

The Expressive Power of Transformers with Chain of Thought

Recent theoretical work has identified surprisingly simple reasoning problems, such as checking if two nodes in a graph are connected or simulating finite-state machines, that are provably unsolvable by standard transformers that answer immediately after reading their input. However, in practice, transformers' reasoning can be improved by allowing them to use a "chain of thought" or "scratchpad", i.e., generate and condition on a sequence of intermediate tokens before answering. Motivated by this, we ask: Does such intermediate generation fundamentally extend the computational power of a decoder-only transformer? We show that the answer is yes, but the amount of increase depends crucially on the amount of intermediate generation. For instance, we find that transformer decoders with a logarithmic number of decoding steps (w.r.t. the input length) push the limits of standard transformers only slightly, while a linear number of decoding steps, assuming a slight generalization to standard pre-norm, adds a clear new ability (under standard complexity conjectures): recognizing all regular languages. Our results also imply that linear steps keep transformer decoders within context-sensitive languages, and polynomial steps with generalized pre-norm make them recognize exactly the class of polynomial-time solvable problems -- the first exact characterization of a type of transformers in terms of standard complexity classes. Together, our results provide a nuanced framework for understanding how the length of a transformer's chain of thought or scratchpad impacts its reasoning power.

  • 2 authors
·
Oct 11, 2023

Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard

Tabular data, a fundamental data format in machine learning, is predominantly utilized in competitions and real-world applications. The performance of tabular models--such as gradient boosted decision trees and neural networks--can vary significantly across datasets due to differences in feature distributions and task characteristics. Achieving top performance on each dataset often requires specialized expert knowledge. To address this variability, practitioners often aggregate the predictions of multiple models. However, conventional aggregation strategies typically rely on static combination rules and lack instance-level adaptability. In this work, we propose an in-context ensemble framework for tabular prediction that leverages large language models (LLMs) to perform dynamic, instance-specific integration of external model predictions. Without access to raw tabular features or semantic information, our method constructs a context around each test instance using its nearest neighbors and the predictions from a pool of external models. Within this enriched context, we introduce Chain of Tabular Thoughts (CoT^2), a prompting strategy that guides LLMs through multi-step, interpretable reasoning, making still further progress toward expert-level decision-making. Experimental results show that our method outperforms well-tuned baselines and standard ensemble techniques across a wide range of tabular datasets.

  • 3 authors
·
May 19, 2025

Training Large Language Models to Reason in a Continuous Latent Space

Large language models (LLMs) are restricted to reason in the "language space", where they typically express the reasoning process with a chain-of-thought (CoT) to solve a complex reasoning problem. However, we argue that language space may not always be optimal for reasoning. For example, most word tokens are primarily for textual coherence and not essential for reasoning, while some critical tokens require complex planning and pose huge challenges to LLMs. To explore the potential of LLM reasoning in an unrestricted latent space instead of using natural language, we introduce a new paradigm Coconut (Chain of Continuous Thought). We utilize the last hidden state of the LLM as a representation of the reasoning state (termed "continuous thought"). Rather than decoding this into a word token, we feed it back to the LLM as the subsequent input embedding directly in the continuous space. Experiments show that Coconut can effectively augment the LLM on several reasoning tasks. This novel latent reasoning paradigm leads to emergent advanced reasoning patterns: the continuous thought can encode multiple alternative next reasoning steps, allowing the model to perform a breadth-first search (BFS) to solve the problem, rather than prematurely committing to a single deterministic path like CoT. Coconut outperforms CoT in certain logical reasoning tasks that require substantial backtracking during planning, with fewer thinking tokens during inference. These findings demonstrate the promise of latent reasoning and offer valuable insights for future research.

  • 7 authors
·
Dec 9, 2024 7

TaCo: Enhancing Cross-Lingual Transfer for Low-Resource Languages in LLMs through Translation-Assisted Chain-of-Thought Processes

LLMs such as ChatGPT and PaLM can be utilized to train on a new language and revitalize low-resource languages. However, it is evidently very costly to pretrain pr fine-tune LLMs to adopt new languages. Another challenge is the limitation of benchmark datasets and the metrics used to measure the performance of models in multilingual settings. This paper proposes cost-effective solutions to both of the aforementioned challenges. We introduce the Multilingual Instruction-Tuning Dataset (MITS), which is comprised of the translation of Alpaca-52K, Dolly-15K, and Vicuna Benchmark in 132 languages. Also, we propose a new method called TaCo: Translation-Assisted Cross-Linguality, which make uses of translation in a chain-of-thought process to instruction-tune LLMs on a new languages through a curriculum learning process. As a proof of concept, we experimented with the instruction-tuned Guanaco-33B model and performed further instruction tuning using the TaCo method in three low-resource languages and one high-resource language. Our results show that the TaCo method impresses the GPT-4 with 82% for a low-resource language in the Vicuna Benchmark dataset, and boosts performance by double in contrast to the performance of instruction tuning only. Our results show that TaCo is a promising method for creating multilingual LLMs, even for low-resource languages. We have released our datasets and the model adapters, and encourage the research community to make use of these resources towards advancing work on multilingual LLMs.

  • 2 authors
·
Nov 17, 2023

TinyChart: Efficient Chart Understanding with Visual Token Merging and Program-of-Thoughts Learning

Charts are important for presenting and explaining complex data relationships. Recently, multimodal large language models (MLLMs) have shown remarkable capabilities in various chart understanding tasks. However, the sheer size of these models in terms of parameters and computational requirements limits their use in resource-constrained environments. In this paper, we present TinyChart, an efficient MLLM for chart understanding with only 3B parameters. TinyChart overcomes two key challenges in efficient chart understanding: (1) reduce the burden of learning numerical computations through a Program-of-Thoughts (PoT) learning strategy, which trains the model to generate Python programs for numerical calculations, and (2) reduce lengthy vision feature sequences produced by the vision transformer for high-resolution images through a Vision Token Merging module, which gradually merges most similar vision tokens. Extensive experiments demonstrate that our 3B TinyChart achieves SOTA performance on a variety of chart understanding benchmarks including ChartQA, Chart-to-Text, Chart-to-Table, OpenCQA, and ChartX. It outperforms several chart understanding MLLM with up to 13B parameters such as ChartLlama and ChartAst, and close-sourced general-purpose MLLM GPT-4V on ChartQA. It also demonstrates its superior efficiency with higher throughput during inference due to a smaller model scale and more efficient vision encoding. Our code and model are available at https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/TinyChart.

  • 8 authors
·
Apr 25, 2024

AstroMLab 4: Benchmark-Topping Performance in Astronomy Q&A with a 70B-Parameter Domain-Specialized Reasoning Model

General-purpose large language models, despite their broad capabilities, often struggle with specialized domain knowledge, a limitation particularly pronounced in more accessible, lower-parameter versions. This gap hinders their deployment as effective agents in demanding fields such as astronomy. Building on our prior work with AstroSage-8B, this study introduces AstroSage-70B, a significantly larger and more advanced domain-specialized natural-language AI assistant. It is designed for research and education across astronomy, astrophysics, space science, astroparticle physics, cosmology, and astronomical instrumentation. Developed from the Llama-3.1-70B foundation, AstroSage-70B underwent extensive continued pre-training on a vast corpus of astronomical literature, followed by supervised fine-tuning and model merging. Beyond its 70-billion parameter scale, this model incorporates refined datasets, judiciously chosen learning hyperparameters, and improved training procedures, achieving state-of-the-art performance on complex astronomical tasks. Notably, we integrated reasoning chains into the SFT dataset, enabling AstroSage-70B to either answer the user query immediately, or first emit a human-readable thought process. Evaluated on the AstroMLab-1 benchmark -- comprising 4,425 questions from literature withheld during training -- AstroSage-70B achieves state-of-the-art performance. It surpasses all other tested open-weight and proprietary models, including leading systems like o3, Gemini-2.5-Pro, Claude-3.7-Sonnet, Deepseek-R1, and Qwen-3-235B, even those with API costs two orders of magnitude higher. This work demonstrates that domain specialization, when applied to large-scale models, can enable them to outperform generalist counterparts in specialized knowledge areas like astronomy, thereby advancing the frontier of AI capabilities in the field.

  • 10 authors
·
May 23, 2025

Similarity is Not All You Need: Endowing Retrieval Augmented Generation with Multi Layered Thoughts

In recent years, large language models (LLMs) have made remarkable achievements in various domains. However, the untimeliness and cost of knowledge updates coupled with hallucination issues of LLMs have curtailed their applications in knowledge intensive tasks, where retrieval augmented generation (RAG) can be of help. Nevertheless, existing retrieval augmented models typically use similarity as a bridge between queries and documents and follow a retrieve then read procedure. In this work, we argue that similarity is not always the panacea and totally relying on similarity would sometimes degrade the performance of retrieval augmented generation. To this end, we propose MetRag, a Multi layEred Thoughts enhanced Retrieval Augmented Generation framework. To begin with, beyond existing similarity oriented thought, we embrace a small scale utility model that draws supervision from an LLM for utility oriented thought and further come up with a smarter model by comprehensively combining the similarity and utility oriented thoughts. Furthermore, given the fact that the retrieved document set tends to be huge and using them in isolation makes it difficult to capture the commonalities and characteristics among them, we propose to make an LLM as a task adaptive summarizer to endow retrieval augmented generation with compactness-oriented thought. Finally, with multi layered thoughts from the precedent stages, an LLM is called for knowledge augmented generation. Extensive experiments on knowledge-intensive tasks have demonstrated the superiority of MetRag.

  • 12 authors
·
May 30, 2024 2

TextCoT: Zoom In for Enhanced Multimodal Text-Rich Image Understanding

The advent of Large Multimodal Models (LMMs) has sparked a surge in research aimed at harnessing their remarkable reasoning abilities. However, for understanding text-rich images, challenges persist in fully leveraging the potential of LMMs, and existing methods struggle with effectively processing high-resolution images. In this work, we propose TextCoT, a novel Chain-of-Thought framework for text-rich image understanding. TextCoT utilizes the captioning ability of LMMs to grasp the global context of the image and the grounding capability to examine local textual regions. This allows for the extraction of both global and local visual information, facilitating more accurate question-answering. Technically, TextCoT consists of three stages, including image overview, coarse localization, and fine-grained observation. The image overview stage provides a comprehensive understanding of the global scene information, and the coarse localization stage approximates the image area containing the answer based on the question asked. Then, integrating the obtained global image descriptions, the final stage further examines specific regions to provide accurate answers. Our method is free of extra training, offering immediate plug-and-play functionality. Extensive experiments are conducted on a series of text-rich image question-answering benchmark datasets based on several advanced LMMs, and the results demonstrate the effectiveness and strong generalization ability of our method. Code is available at https://github.com/bzluan/TextCoT.

  • 6 authors
·
Apr 15, 2024