Papers
arxiv:2602.07153

ANCHOR: Branch-Point Data Generation for GUI Agents

Published on Feb 6
· Submitted by
Jinbiao Wei
on Feb 11
Authors:
,
,

Abstract

A trajectory expansion framework called Anchor bootstraps scalable desktop supervision from seed demonstrations by identifying branch points and generating new trajectories through state-grounded task variants.

AI-generated summary

End-to-end GUI agents for real desktop environments require large amounts of high-quality interaction data, yet collecting human demonstrations is expensive and existing synthetic pipelines often suffer from limited task diversity or noisy, goal-drifting trajectories. We present a trajectory expansion framework Anchor that bootstraps scalable desktop supervision from a small set of verified seed demonstrations. Starting from each seed, we identify branch points that correspond to meaningful state changes and propose new, state-grounded task variants conditioned on the current GUI context. An executing agent then follows the proposed instructions to generate new trajectories, while a verifier enforces task completion via state-aware checks and trajectory-level consistency. To improve supervision quality, we further apply task-conditioned step-level filtering to remove ungrounded actions and denoise post-branch segments to maintain coherent intent. Experiments on standard desktop benchmarks, OSWorld and WindowsAgentArena, show that models fine-tuned on our expanded corpus achieve consistent improvements over zero-shot agents and representative synthesis baselines, and generalize across applications and operating systems.

Community

Paper author Paper submitter

End-to-end GUI agents for real desktop environments require large amounts of high-quality interaction data, yet collecting human demonstrations is expensive and existing synthetic pipelines often suffer from limited task diversity or noisy, goal-drifting trajectories. We present a trajectory expansion framework Anchor that bootstraps scalable desktop supervision from a small set of verified seed demonstrations. Starting from each seed, we identify branch points that correspond to meaningful state changes and propose new, state-grounded task variants conditioned on the current GUI context. An executing agent then follows the proposed instructions to generate new trajectories, while a verifier enforces task completion via state-aware checks and trajectory-level consistency. To improve supervision quality, we further apply task-conditioned step-level filtering to remove ungrounded actions and denoise post-branch segments to maintain coherent intent. Experiments on standard desktop benchmarks, OSWorld and WindowsAgentArena, show that models fine-tuned on our expanded corpus achieve consistent improvements over zero-shot agents and representative synthesis baselines, and generalize across applications and operating systems.

Paper author Paper submitter

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2602.07153 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2602.07153 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2602.07153 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.